16-methyl stearic acid
featured

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H527994

CAS#: 17001-28-4

Description: Methyl stearic acid is a bioactive chemical.


Chemical Structure

img
16-methyl stearic acid
CAS# 17001-28-4

Theoretical Analysis

Hodoodo Cat#: H527994
Name: 16-methyl stearic acid
CAS#: 17001-28-4
Chemical Formula: C19H38O2
Exact Mass: 298.29
Molecular Weight: 298.511
Elemental Analysis: C, 76.45; H, 12.83; O, 10.72

Price and Availability

Size Price Availability Quantity
5mg USD 400 2 Weeks
10mg USD 750 2 Weeks
Bulk inquiry

Synonym: Methyl stearic acid; Ai19:0; Anteisononadecanoic Acid; anteiso-19:0

IUPAC/Chemical Name: (+/-)-16-Methyloctadecanoic acid

InChi Key: PCGKIWPTIJPQHI-UHFFFAOYSA-N

InChi Code: InChI=1S/C19H38O2/c1-3-18(2)16-14-12-10-8-6-4-5-7-9-11-13-15-17-19(20)21/h18H,3-17H2,1-2H3,(H,20,21)

SMILES Code: CCC(C)CCCCCCCCCCCCCCC(O)=O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.03.00

More Info:

Biological target:
In vitro activity:
In vivo activity:

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
DMF 10.0 33.50
DMSO 10.0 33.50
Ethanol 5.0 16.75

Preparing Stock Solutions

The following data is based on the product molecular weight 298.51 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Qiu R, Huang Z, Wang L. [Analysis of fatty acid composition in cottonseed by gas chromatography with on-line pyrolytic methylation]. Se Pu. 2018 Sep 8;36(9):925-930. doi: 10.3724/SP.J.1123.2018.04012. Chinese. PubMed PMID: 30251522.

2: Bukowiecka-Matusiak M, Burzynska-Pedziwiatr I, Sansone A, Malachowska B, Zurawska-Klis M, Ferreri C, Chatgilialoglu C, Ochedalski T, Cypryk K, Wozniak LA. Lipid profile changes in erythrocyte membranes of women with diagnosed GDM. PLoS One. 2018 Sep 14;13(9):e0203799. doi: 10.1371/journal.pone.0203799. eCollection 2018. PubMed PMID: 30216387; PubMed Central PMCID: PMC6138398.

3: Machida S, Suzuki I. Characterization of cyanobacterial cells synthesizing 10-methyl stearic acid. Photosynth Res. 2018 Jun 25. doi: 10.1007/s11120-018-0537-5. [Epub ahead of print] PubMed PMID: 29943360.

4: Oellig C, Brändle K, Schwack W. Characterization of E 471 food emulsifiers by high-performance thin-layer chromatography-fluorescence detection. J Chromatogr A. 2018 Jul 13;1558:69-76. doi: 10.1016/j.chroma.2018.05.010. Epub 2018 May 7. PubMed PMID: 29752044.

5: Sahoo RK, Kumar M, Mohanty S, Sawyer M, Rahman PKSM, Sukla LB, Subudhi E. Statistical optimization for lipase production from solid waste of vegetable oil industry. Prep Biochem Biotechnol. 2018 Apr 21;48(4):321-326. doi: 10.1080/10826068.2018.1431785. Epub 2018 Mar 30. PubMed PMID: 29424632.

6: Mopuri R, Ganjayi M, Meriga B, Koorbanally NA, Islam MS. The effects of Ficus carica on the activity of enzymes related to metabolic syndrome. J Food Drug Anal. 2018 Jan;26(1):201-210. doi: 10.1016/j.jfda.2017.03.001. Epub 2017 Apr 22. PubMed PMID: 29389556.

7: Mishra A, Medhi K, Maheshwari N, Srivastava S, Thakur IS. Biofuel production and phycoremediation by Chlorella sp. ISTLA1 isolated from landfill site. Bioresour Technol. 2018 Apr;253:121-129. doi: 10.1016/j.biortech.2017.12.012. Epub 2018 Jan 6. PubMed PMID: 29335189.

8: Awaad AS, Alothman MR, Zain YM, Zain GM, Alqasoumi SI, Hassan DA. Comparative nutritional value and antimicrobial activities between three Euphorbia species growing in Saudi Arabia. Saudi Pharm J. 2017 Dec;25(8):1226-1230. doi: 10.1016/j.jsps.2017.09.007. Epub 2017 Sep 20. PubMed PMID: 29204072; PubMed Central PMCID: PMC5688225.

9: Machida S, Bakku RK, Suzuki I. Expression of Genes for a Flavin Adenine Dinucleotide-Binding Oxidoreductase and a Methyltransferase from Mycobacterium chlorophenolicum Is Necessary for Biosynthesis of 10-Methyl Stearic Acid from Oleic Acid in Escherichia coli. Front Microbiol. 2017 Oct 23;8:2061. doi: 10.3389/fmicb.2017.02061. eCollection 2017. PubMed PMID: 29109716; PubMed Central PMCID: PMC5660069.

10: Deeba F, Patel A, Arora N, Pruthi V, Pruthi PA, Negi YS. Amaranth seeds (Amaranthus palmeri L.) as novel feedstock for biodiesel production by oleaginous yeast. Environ Sci Pollut Res Int. 2018 Jan;25(1):353-362. doi: 10.1007/s11356-017-0444-x. Epub 2017 Oct 16. PubMed PMID: 29039037.

11: Liu W, Lu G. Partial Hydrogenation of Sunflower Oil-derived FAMEs Catalyzed by the Efficient and Recyclable Palladium Nanoparticles in Polyethylene Glycol. J Oleo Sci. 2017 Oct 1;66(10):1161-1168. doi: 10.5650/jos.ess16206. Epub 2017 Sep 15. PubMed PMID: 28924078.

12: Caf F, Yilmaz Ö, Şen Özdemir N. Potential of Laurencia obtusa as a substrate for the development of a probiotic Saccharomyces cerevisiae. Cell Mol Biol (Noisy-le-grand). 2017 Aug 30;63(8):71-76. doi: 10.14715/cmb/2017.63.8.16. PubMed PMID: 28886317.

13: Prasinou P, Dafnis I, Giacometti G, Ferreri C, Chroni A, Chatgilialoglu C. Fatty acid-based lipidomics and membrane remodeling induced by apoE3 and apoE4 in human neuroblastoma cells. Biochim Biophys Acta Biomembr. 2017 Oct;1859(10):1967-1973. doi: 10.1016/j.bbamem.2017.07.001. Epub 2017 Jul 6. PubMed PMID: 28688796.

14: Raczyk M, Kmiecik D, Schieberle P, Przybylski R, Jeleń H, Rudzińska M. Model studies on the formation of volatile compounds generated by a thermal treatment of steryl esters with different fatty acid moieties. Food Res Int. 2017 Jul;97:87-94. doi: 10.1016/j.foodres.2017.03.039. Epub 2017 Mar 23. PubMed PMID: 28578069.

15: Boniface PK, Baptista Ferreira S, Roland Kaiser C. Current state of knowledge on the traditional uses, phytochemistry, and pharmacology of the genus Hymenaea. J Ethnopharmacol. 2017 Jul 12;206:193-223. doi: 10.1016/j.jep.2017.05.024. Epub 2017 May 21. Review. PubMed PMID: 28536059.

16: Hu W, Mao A, Wong P, Larsen A, Yazaki PJ, Wong JYC, Shively JE. Characterization of 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[Methoxy(polyethylene glycerol)-2000] and Its Complex with Doxorubicin Using Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics. Bioconjug Chem. 2017 Jun 21;28(6):1777-1790. doi: 10.1021/acs.bioconjchem.7b00238. Epub 2017 Jun 9. PubMed PMID: 28520406.

17: Marsol-Vall A, Balcells M, Eras J, Canela-Garayoa R. Dispersive liquid-liquid microextraction and injection-port derivatization for the determination of free lipophilic compounds in fruit juices by gas chromatography-mass spectrometry. J Chromatogr A. 2017 Apr 28;1495:12-21. doi: 10.1016/j.chroma.2017.03.027. Epub 2017 Mar 18. PubMed PMID: 28342584.

18: Yan J, Tan H, Zhu L, Yu W, Yang H, Shen X, Wang Z, Liu X, Wang J. [Quantification and comparison of fatty acid between white peanuts and red peanuts]. Wei Sheng Yan Jiu. 2017 Jan;46(1):62-69. Chinese. PubMed PMID: 29903154.

19: Khattab H, El Marid Z. Environmental alterations in biofuel generating molecules in Zilla spinosa. Z Naturforsch C. 2017 Mar 1;72(3-4):77-91. doi: 10.1515/znc-2016-0151. PubMed PMID: 27740933.

20: Jung W, Kim EJ, Han SJ, Choi HG, Kim S. Characterization of Stearoyl-CoA Desaturases from a Psychrophilic Antarctic Copepod, Tigriopus kingsejongensis. Mar Biotechnol (NY). 2016 Oct;18(5):564-574. Epub 2016 Sep 14. PubMed PMID: 27627903.