(−)-β-Sesquiphellandrene
featured

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H112017

CAS#: 20307-83-9

Description: (–)-β-Sesquiphellandrene is a sesquiterpene that has been found in Z. officinale and has antiviral and anticancer activities. It reduces rhinovirus IB virus replication in a plaque reduction assay (IC50 = 0.44 µM). (–)-β-Sesquiphellandrene is cytotoxic to HCT116 cells when used at a concentration of 10 µM.


Chemical Structure

img
(−)-β-Sesquiphellandrene
CAS# 20307-83-9

Theoretical Analysis

Hodoodo Cat#: H112017
Name: (−)-β-Sesquiphellandrene
CAS#: 20307-83-9
Chemical Formula: C15H24
Exact Mass: 204.19
Molecular Weight: 204.360
Elemental Analysis: C, 88.16; H, 11.84

Price and Availability

Size Price Availability Quantity
1mg USD 460 2 Weeks
Bulk inquiry

Synonym: (−)β-Sesquiphellandrene; (−) β-Sesquiphellandrene; (−)-βSesquiphellandrene; (−)-β Sesquiphellandrene; (−) β Sesquiphellandrene; (−)βSesquiphellandrene

IUPAC/Chemical Name: (R)-3-methylene-6-((S)-6-methylhept-5-en-2-yl)cyclohex-1-ene

InChi Key: PHWISBHSBNDZDX-LSDHHAIUSA-N

InChi Code: InChI=1S/C15H24/c1-12(2)6-5-7-14(4)15-10-8-13(3)9-11-15/h6,8,10,14-15H,3,5,7,9,11H2,1-2,4H3/t14-,15+/m0/s1

SMILES Code: C/C(C)=C\CC[C@H](C)[C@]1(CCC(C=C1)=C)[H]

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 204.36 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Khetnon P, Busarakam K, Sukhaket W, Niwaspragrit C, Kamolsukyeunyong W, Kamata N, Sanguansub S. Mechanisms of Trichomes and Terpene Compounds in Indigenous and Commercial Thai Rice Varieties against Brown Planthopper. Insects. 2022 May 1;13(5):427. doi: 10.3390/insects13050427. PMID: 35621763; PMCID: PMC9143670.


2: Pantharos P, Sukcharoen P, Phadungrakwittaya R, Akarasereenont P, Booranasubkajorn S, Lumlerdkij N. Utilization of UPLC-PDA and GC-MS/MS coupled with metabolomics analysis to identify bioactive metabolites in medicinal turmeric at different ages for the quality assurance. Phytomedicine. 2022 May 5;102:154157. doi: 10.1016/j.phymed.2022.154157. Epub ahead of print. PMID: 35550222.


3: Yang S, Wang N, Kimani S, Li Y, Bao T, Ning G, Li L, Liu B, Wang L, Gao X. Characterization of Terpene synthase variation in flowers of wild aquilegia species from Northeastern Asia. Hortic Res. 2022 Jan 18;9:uhab020. doi: 10.1093/hr/uhab020. Epub ahead of print. PMID: 35039842; PMCID: PMC8771452.


4: Calvopiña K, Malagón O, Capetti F, Sgorbini B, Verdugo V, Gilardoni G. A New Sesquiterpene Essential Oil from the Native Andean Species Jungia rugosa Less (Asteraceae): Chemical Analysis, Enantiomeric Evaluation, and Cholinergic Activity. Plants (Basel). 2021 Oct 4;10(10):2102. doi: 10.3390/plants10102102. PMID: 34685911; PMCID: PMC8540832.


5: Lu Y, Wang J, Shen G, Liu J, Zhu H, Zhao J, He S. Rapid Determination and Quality Control of Pharmacological Volatiles of Turmeric (Curcuma longa L.) by Fast Gas Chromatography-Surface Acoustic Wave Sensor. Molecules. 2021 Sep 24;26(19):5797. doi: 10.3390/molecules26195797. PMID: 34641341; PMCID: PMC8510441.


6: Utama-Ang N, Sida S, Wanachantararak P, Kawee-Ai A. Development of edible Thai rice film fortified with ginger extract using microwave-assisted extraction for oral antimicrobial properties. Sci Rep. 2021 Jul 21;11(1):14870. doi: 10.1038/s41598-021-94430-y. PMID: 34290338; PMCID: PMC8295348.


7: Raafat K. Identification of phytochemicals from North African plants for treating Alzheimer's diseases and of their molecular targets by in silico network pharmacology approach. J Tradit Complement Med. 2020 Aug 12;11(3):268-278. doi: 10.1016/j.jtcme.2020.08.002. PMID: 34012873; PMCID: PMC8116716.


8: Setzer WN, Duong L, Poudel A, Mentreddy SR. Variation in the Chemical Composition of Five Varieties of Curcuma longa Rhizome Essential Oils Cultivated in North Alabama. Foods. 2021 Jan 21;10(2):212. doi: 10.3390/foods10020212. PMID: 33494170; PMCID: PMC7909793.


9: Kazemeini F, Asri Y, Mostafavi G, Kalvandi R, Mehregan I. Chemical compositions of the essential oils from Iranian populations of Rhabdosciadium aucheri Boiss. (Apiaceae). Nat Prod Res. 2021 Jan 13:1-6. doi: 10.1080/14786419.2020.1870226. Epub ahead of print. PMID: 33435757.


10: Chen Y, Shukurova MK, Asikin Y, Kusano M, Watanabe KN. Characterization of Volatile Organic Compounds in Mango Ginger (Curcuma amada Roxb.) from Myanmar. Metabolites. 2020 Dec 30;11(1):21. doi: 10.3390/metabo11010021. PMID: 33396947; PMCID: PMC7824228.


11: Jaiswal D, Agrawal SB. Ultraviolet-B induced changes in physiology, phenylpropanoid pathway, and essential oil composition in two Curcuma species (C. caesia Roxb. and C. longa L.). Ecotoxicol Environ Saf. 2021 Jan 15;208:111739. doi: 10.1016/j.ecoenv.2020.111739. Epub 2020 Dec 8. PMID: 33396067.


12: Abdullahi A, Ahmad K, Ismail IS, Asib N, Ahmed OH, Abubakar AI, Siddiqui Y, Ismail MR. Potential of Using Ginger Essential Oils-Based Nanotechnology to Control Tropical Plant Diseases. Plant Pathol J. 2020 Dec 1;36(6):515-535. doi: 10.5423/PPJ.RW.05.2020.0077. PMID: 33312089; PMCID: PMC7721540.


13: Joshi A, Sunil Krishnan G, Kaushik V. Molecular docking and simulation investigation: effect of beta-sesquiphellandrene with ionic integration on SARS- CoV2 and SFTS viruses. J Genet Eng Biotechnol. 2020 Nov 27;18(1):78. doi: 10.1186/s43141-020-00095-x. PMID: 33245459; PMCID: PMC7692438.


14: Dhandapani S, Kim MJ, Chin HJ, Leong SH, Jang IC. Identification and Functional Characterization of Tissue-Specific Terpene Synthases in Stevia rebaudiana. Int J Mol Sci. 2020 Nov 13;21(22):8566. doi: 10.3390/ijms21228566. PMID: 33202940; PMCID: PMC7696289.


15: Bao T, Shadrack K, Yang S, Xue X, Li S, Wang N, Wang Q, Wang L, Gao X, Cronk Q. Functional Characterization of Terpene Synthases Accounting for the Volatilized-Terpene Heterogeneity in Lathyrus odoratus Cultivar Flowers. Plant Cell Physiol. 2020 Oct 1;61(10):1733-1749. doi: 10.1093/pcp/pcaa100. PMID: 32726442.


16: Ker DS, Chan KG, Othman R, Hassan M, Ng CL. Site-directed mutagenesis of β sesquiphellandrene synthase enhances enzyme promiscuity. Phytochemistry. 2020 May;173:112286. doi: 10.1016/j.phytochem.2020.112286. Epub 2020 Feb 12. PMID: 32059132.


17: Da Silva RS, De Oliveira MMG, Silva KP, Da Silva Vasconcelos Rodrigues I, Dos Santos Pinto V, Blank AF, Fernandes RPM. Synergistic effect of Cordia curassavica Jacq. essential oils association against the phytopathogen Xanthomonas campestris pv. campestris. Environ Sci Pollut Res Int. 2020 Feb;27(4):4376-4389. doi: 10.1007/s11356-019-06631-8. Epub 2019 Dec 12. PMID: 31832936.


18: Demiray M, Miller DJ, Allemann RK. Harnessing enzyme plasticity for the synthesis of oxygenated sesquiterpenoids. Beilstein J Org Chem. 2019 Sep 17;15:2184-2190. doi: 10.3762/bjoc.15.215. PMID: 31598175; PMCID: PMC6774066.


19: Aminkhani A, Sharifi R, Dorosti R. Chemical Composition and Antimicrobial Activity of Achillea tenuifolia Lam. Essential Oil at Different Phenological Stages from Khoy. Chem Biodivers. 2019 Dec;16(12):e1900289. doi: 10.1002/cbdv.201900289. Epub 2019 Nov 5. PMID: 31552700.


20: Sun J, Cui G, Ma X, Zhan Z, Ma Y, Teng Z, Gao W, Wang Y, Chen T, Lai C, Zhao Y, Tang J, Lin H, Shen Y, Zeng W, Guo J, Huang L. An integrated strategy to identify genes responsible for sesquiterpene biosynthesis in turmeric. Plant Mol Biol. 2019 Oct;101(3):221-234. doi: 10.1007/s11103-019-00892-0. Epub 2019 Jun 15. PMID: 31203559.