Val-cit-PAB-OH
new
featured

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H558282

CAS#: 159857-79-1 (Val-cit-PAB-OH)

Description: Val-cit-PAB-OH is an precursor for making MC-​Val-​Cit-​PAB, which is also known as MC-​Val-​Cit-​PAB-OH. Val-cit-PAB-OH is a cathepsin cleavable ADC peptide linker. MC-​Val-​Cit-​PAB is useful for making ADC (antibody-drug conjugates). FDA approved drugs such as brentuximab vedotin use this linker. The Val-Cit will specifically be cleaved by catepsin B. As this enzyme is only present in the lysosome the ADC payload will be release only in the cell. Azido group will react with DBCO, BCN or other Alkyne group through click chemistry, PEG spacer increases aqueous solubility. **** Please also see similar products: #610235: MC-Val-Cit-PAB (ADC peptide linker) and #610234: MC-Val-Cit-PAB-PNP (ADC peptide linker); #620108 Val-cit-PAB-OH (ADC peptide linker).


Chemical Structure

img
Val-cit-PAB-OH
CAS# 159857-79-1 (Val-cit-PAB-OH)

Theoretical Analysis

Hodoodo Cat#: H558282
Name: Val-cit-PAB-OH
CAS#: 159857-79-1 (Val-cit-PAB-OH)
Chemical Formula: C18H29N5O4
Exact Mass: 379.22
Molecular Weight: 379.461
Elemental Analysis: C, 56.98; H, 7.70; N, 18.46; O, 16.86

Price and Availability

Size Price Availability Quantity
100mg USD 250 2 Weeks
200mg USD 400 2 Weeks
500mg USD 850 2 Weeks
1g USD 1450 2 Weeks
2g USD 2450 2 Weeks
Bulk inquiry

Related CAS #: 159857-79-1 (Val-cit-PAB-OH)   159857-80-4 (MC-Val-Cit-PAB)   159857-81-5 (MC-Val-Cit-PAB-PNP)    

Synonym: Val-cit-PAB-OH; Val-Cit-PAB

IUPAC/Chemical Name: (S)-2-((S)-2-amino-3-methylbutanamido)-N-(4-(hydroxymethyl)phenyl)-5-ureidopentanamide

InChi Key: VEGGTWZUZGZKHY-GJZGRUSLSA-N

InChi Code: InChI=1S/C18H29N5O4/c1-11(2)15(19)17(26)23-14(4-3-9-21-18(20)27)16(25)22-13-7-5-12(10-24)6-8-13/h5-8,11,14-15,24H,3-4,9-10,19H2,1-2H3,(H,22,25)(H,23,26)(H3,20,21,27)/t14-,15-/m0/s1

SMILES Code: NC(NCCC[C@H](NC([C@@H](N)C(C)C)=O)C(NC1=CC=C(CO)C=C1)=O)=O

Appearance: White to off-white solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info: Please also see similar products: #610235: MC-Val-Cit-PAB (ADC peptide linker) #610234: MC-Val-Cit-PAB-PNP (ADC peptide linker); # #620108 Val-cit-PAB-OH (ADC peptide linker).

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 379.46 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Vhora I, Patil S, Bhatt P, Misra A. Protein- and Peptide-drug conjugates: an emerging drug delivery technology. Adv Protein Chem Struct Biol. 2015;98:1-55. doi: 10.1016/bs.apcsb.2014.11.001. Epub 2015 Mar 14. PubMed PMID: 25819275.

2: Koga Y, Manabe S, Aihara Y, Sato R, Tsumura R, Iwafuji H, Furuya F, Fuchigami H, Fujiwara Y, Hisada Y, Yamamoto Y, Yasunaga M, Matsumura Y. Antitumor effect of antitissue factor antibody-MMAE conjugate in human pancreatic tumor xenografts. Int J Cancer. 2015 Sep 15;137(6):1457-66. doi: 10.1002/ijc.29492. Epub 2015 Mar 9. PubMed PMID: 25704403.

3: Verma VA, Pillow TH, DePalatis L, Li G, Phillips GL, Polson AG, Raab HE, Spencer S, Zheng B. The cryptophycins as potent payloads for antibody drug conjugates. Bioorg Med Chem Lett. 2015 Feb 15;25(4):864-8. doi: 10.1016/j.bmcl.2014.12.070. Epub 2015 Jan 2. PubMed PMID: 25613677.

4: Badescu G, Bryant P, Bird M, Henseleit K, Swierkosz J, Parekh V, Tommasi R, Pawlisz E, Jurlewicz K, Farys M, Camper N, Sheng X, Fisher M, Grygorash R, Kyle A, Abhilash A, Frigerio M, Edwards J, Godwin A. Bridging disulfides for stable and defined antibody drug conjugates. Bioconjug Chem. 2014 Jun 18;25(6):1124-36. doi: 10.1021/bc500148x. Epub 2014 May 23. PubMed PMID: 24791606.

5: Adem YT, Schwarz KA, Duenas E, Patapoff TW, Galush WJ, Esue O. Auristatin antibody drug conjugate physical instability and the role of drug payload. Bioconjug Chem. 2014 Apr 16;25(4):656-64. doi: 10.1021/bc400439x. Epub 2014 Mar 13. PubMed PMID: 24559399.

6: Beckley NS, Lazzareschi KP, Chih HW, Sharma VK, Flores HL. Investigation into temperature-induced aggregation of an antibody drug conjugate. Bioconjug Chem. 2013 Oct 16;24(10):1674-83. doi: 10.1021/bc400182x. Epub 2013 Sep 26. PubMed PMID: 24070051.

7: Jeffrey SC, Burke PJ, Lyon RP, Meyer DW, Sussman D, Anderson M, Hunter JH, Leiske CI, Miyamoto JB, Nicholas ND, Okeley NM, Sanderson RJ, Stone IJ, Zeng W, Gregson SJ, Masterson L, Tiberghien AC, Howard PW, Thurston DE, Law CL, Senter PD. A potent anti-CD70 antibody-drug conjugate combining a dimeric pyrrolobenzodiazepine drug with site-specific conjugation technology. Bioconjug Chem. 2013 Jul 17;24(7):1256-63. doi: 10.1021/bc400217g. Epub 2013 Jun 28. PubMed PMID: 23808985.

8: Li D, Poon KA, Yu SF, Dere R, Go M, Lau J, Zheng B, Elkins K, Danilenko D, Kozak KR, Chan P, Chuh J, Shi X, Nazzal D, Fuh F, McBride J, Ramakrishnan V, de Tute R, Rawstron A, Jack AS, Deng R, Chu YW, Dornan D, Williams M, Ho W, Ebens A, Prabhu S, Polson AG. DCDT2980S, an anti-CD22-monomethyl auristatin E antibody-drug conjugate, is a potential treatment for non-Hodgkin lymphoma. Mol Cancer Ther. 2013 Jul;12(7):1255-65. doi: 10.1158/1535-7163.MCT-12-1173. Epub 2013 Apr 18. PubMed PMID: 23598530.

9: Gianolio DA, Rouleau C, Bauta WE, Lovett D, Cantrell WR Jr, Recio A 3rd, Wolstenholme-Hogg P, Busch M, Pan P, Stefano JE, Kramer HM, Goebel J, Krumbholz RD, Roth S, Schmid SM, Teicher BA. Targeting HER2-positive cancer with dolastatin 15 derivatives conjugated to trastuzumab, novel antibody-drug conjugates. Cancer Chemother Pharmacol. 2012 Sep;70(3):439-49. doi: 10.1007/s00280-012-1925-8. Epub 2012 Jul 22. PubMed PMID: 22821053.

10: Govindan SV, Goldenberg DM. Designing immunoconjugates for cancer therapy. Expert Opin Biol Ther. 2012 Jul;12(7):873-90. doi: 10.1517/14712598.2012.685153. Review. PubMed PMID: 22679911.

11: Petrul HM, Schatz CA, Kopitz CC, Adnane L, McCabe TJ, Trail P, Ha S, Chang YS, Voznesensky A, Ranges G, Tamburini PP. Therapeutic mechanism and efficacy of the antibody-drug conjugate BAY 79-4620 targeting human carbonic anhydrase 9. Mol Cancer Ther. 2012 Feb;11(2):340-9. doi: 10.1158/1535-7163.MCT-11-0523. Epub 2011 Dec 6. PubMed PMID: 22147747.

12: Boswell CA, Mundo EE, Zhang C, Bumbaca D, Valle NR, Kozak KR, Fourie A, Chuh J, Koppada N, Saad O, Gill H, Shen BQ, Rubinfeld B, Tibbitts J, Kaur S, Theil FP, Fielder PJ, Khawli LA, Lin K. Impact of drug conjugation on pharmacokinetics and tissue distribution of anti-STEAP1 antibody-drug conjugates in rats. Bioconjug Chem. 2011 Oct 19;22(10):1994-2004. doi: 10.1021/bc200212a. Epub 2011 Oct 3. PubMed PMID: 21913715.

13: Wang X, Ma D, Olson WC, Heston WD. In vitro and in vivo responses of advanced prostate tumors to PSMA ADC, an auristatin-conjugated antibody to prostate-specific membrane antigen. Mol Cancer Ther. 2011 Sep;10(9):1728-39. doi: 10.1158/1535-7163.MCT-11-0191. Epub 2011 Jul 12. PubMed PMID: 21750220.

14: Dornan D, Bennett F, Chen Y, Dennis M, Eaton D, Elkins K, French D, Go MA, Jack A, Junutula JR, Koeppen H, Lau J, McBride J, Rawstron A, Shi X, Yu N, Yu SF, Yue P, Zheng B, Ebens A, Polson AG. Therapeutic potential of an anti-CD79b antibody-drug conjugate, anti-CD79b-vc-MMAE, for the treatment of non-Hodgkin lymphoma. Blood. 2009 Sep 24;114(13):2721-9. doi: 10.1182/blood-2009-02-205500. Epub 2009 Jul 24. PubMed PMID: 19633198.

15: Polson AG, Calemine-Fenaux J, Chan P, Chang W, Christensen E, Clark S, de Sauvage FJ, Eaton D, Elkins K, Elliott JM, Frantz G, Fuji RN, Gray A, Harden K, Ingle GS, Kljavin NM, Koeppen H, Nelson C, Prabhu S, Raab H, Ross S, Slaga DS, Stephan JP, Scales SJ, Spencer SD, Vandlen R, Wranik B, Yu SF, Zheng B, Ebens A. Antibody-drug conjugates for the treatment of non-Hodgkin's lymphoma: target and linker-drug selection. Cancer Res. 2009 Mar 15;69(6):2358-64. doi: 10.1158/0008-5472.CAN-08-2250. Epub 2009 Mar 3. Erratum in: Cancer Res. 2010 Feb 1;70(3):1275. Slaga, Dion S [added]. PubMed PMID: 19258515.

16: Doronina SO, Bovee TD, Meyer DW, Miyamoto JB, Anderson ME, Morris-Tilden CA, Senter PD. Novel peptide linkers for highly potent antibody-auristatin conjugate. Bioconjug Chem. 2008 Oct;19(10):1960-3. doi: 10.1021/bc800289a. Epub 2008 Sep 20. PubMed PMID: 18803412.

17: Alley SC, Benjamin DR, Jeffrey SC, Okeley NM, Meyer DL, Sanderson RJ, Senter PD. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem. 2008 Mar;19(3):759-65. doi: 10.1021/bc7004329. Epub 2008 Mar 4. PubMed PMID: 18314937.

18: Doronina SO, Mendelsohn BA, Bovee TD, Cerveny CG, Alley SC, Meyer DL, Oflazoglu E, Toki BE, Sanderson RJ, Zabinski RF, Wahl AF, Senter PD. Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug Chem. 2006 Jan-Feb;17(1):114-24. PubMed PMID: 16417259.

19: Sanderson RJ, Hering MA, James SF, Sun MM, Doronina SO, Siadak AW, Senter PD, Wahl AF. In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin Cancer Res. 2005 Jan 15;11(2 Pt 1):843-52. PubMed PMID: 15701875.

20: Afar DE, Bhaskar V, Ibsen E, Breinberg D, Henshall SM, Kench JG, Drobnjak M, Powers R, Wong M, Evangelista F, O'Hara C, Powers D, DuBridge RB, Caras I, Winter R, Anderson T, Solvason N, Stricker PD, Cordon-Cardo C, Scher HI, Grygiel JJ, Sutherland RL, Murray R, Ramakrishnan V, Law DA. Preclinical validation of anti-TMEFF2-auristatin E-conjugated antibodies in the treatment of prostate cancer. Mol Cancer Ther. 2004 Aug;3(8):921-32. PubMed PMID: 15299075.