RG-13022
featured

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H526114

CAS#: 136831-48-6

Description: RG-13022 is an inhibitor of epidermal growth factor (EGF) receptor kinase with an IC50 value of 1 µM in HT-22 cells. Protein tyrosine kinase (PTK) inhibitors are potential antiproliferative agents for diseases caused by the hyperactivity of PTKs.


Chemical Structure

img
RG-13022
CAS# 136831-48-6

Theoretical Analysis

Hodoodo Cat#: H526114
Name: RG-13022
CAS#: 136831-48-6
Chemical Formula: C16H14N2O2
Exact Mass: 266.11
Molecular Weight: 266.300
Elemental Analysis: C, 72.17; H, 5.30; N, 10.52; O, 12.02

Price and Availability

Size Price Availability Quantity
100mg USD 750 2 Weeks
200mg USD 1250 2 Weeks
500mg USD 2150 2 Weeks
1g USD 2950 2 Weeks
2g USD 4250 2 Weeks
5g USD 6450 2 Weeks
Bulk inquiry

Synonym: RG 13022; RG13022; RG-13022.Tyrphostin RG 13022

IUPAC/Chemical Name: 3-Pyridineacetonitrile, alpha-((3,4-dimethoxyphenyl)methylene)-

InChi Key: DBGZNJVTHYFQJI-ZSOIEALJSA-N

InChi Code: InChI=1S/C16H14N2O2/c1-19-15-6-5-12(9-16(15)20-2)8-14(10-17)13-4-3-7-18-11-13/h3-9,11H,1-2H3/b14-8-

SMILES Code: N#C/C(C1=CC=CN=C1)=C/C2=CC=C(OC)C(OC)=C2

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 266.30 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Komatsu N, Maekawa T, Takeuchi S, Takahashi S. Epidermal growth factor and transforming growth factor-alpha stimulate the proliferation of mouse uterine stromal cells. Zoolog Sci. 2003 May;20(5):639-45. PubMed PMID: 12777835.

2: Levitzki A. Tyrosine kinases as targets for cancer therapy. Eur J Cancer. 2002 Sep;38 Suppl 5:S11-8. Review. PubMed PMID: 12528768.

3: Takahashi S, Sharma S, Oomizu S, Honda J, Takeuchi S. Intrapituitary regulatory system of mammotrophs in the mouse. Arch Physiol Biochem. 2002 Apr;110(1-2):34-41. PubMed PMID: 11935398.

4: Yang H, Wang Z, Miyamoto Y, Reinach PS. Cell signaling pathways mediating epidermal growth factor stimulation of Na:K:2Cl cotransport activity in rabbit corneal epithelial cells. J Membr Biol. 2001 Sep 15;183(2):93-101. PubMed PMID: 11562791.

5: Oomizu S, Honda J, Takeuchi S, Kakeya T, Masui T, Takahashi S. Transforming growth factor-alpha stimulates proliferation of mammotrophs and corticotrophs in the mouse pituitary. J Endocrinol. 2000 May;165(2):493-501. PubMed PMID: 10810313.

6: Reddy KB, Krueger JS, Kondapaka SB, Diglio CA. Mitogen-activated protein kinase (MAPK) regulates the expression of progelatinase B (MMP-9) in breast epithelial cells. Int J Cancer. 1999 Jul 19;82(2):268-73. PubMed PMID: 10389762.

7: Bian L, Lei Z, Rao CV. Mitogen-activated protein kinase is involved in epidermal-growth-factor-regulated protein phosphorylation in nuclear membranes isolated from JEG-3 human choriocarcinoma cells. Eur J Biochem. 1998 May 1;253(3):545-51. PubMed PMID: 9654049.

8: McLeod HL, Brunton VG, Eckardt N, Lear MJ, Robins DJ, Workman P, Graham MA. In vivo pharmacology and anti-tumour evaluation of the tyrphostin tyrosine kinase inhibitor RG13022. Br J Cancer. 1996 Dec;74(11):1714-8. PubMed PMID: 8956783; PubMed Central PMCID: PMC2077212.

9: McLaughlin M, Brunton V, Morrison V, Rae A, Cooke T, Bartlett J. Growth inhibition of gastric cancer cell lines by the tyrphostin RG13022 and its effects on intracellular signalling. Int J Oncol. 1996 Mar;8(3):589-96. PubMed PMID: 21544401.

10: Kondapaka BS, Reddy KB. Tyrosine kinase inhibitor as a novel signal transduction and antiproliferative agent: prostate cancer. Mol Cell Endocrinol. 1996 Mar 1;117(1):53-8. PubMed PMID: 8734473.

11: Gulli LF, Palmer KC, Chen YQ, Reddy KB. Epidermal growth factor-induced apoptosis in A431 cells can be reversed by reducing the tyrosine kinase activity. Cell Growth Differ. 1996 Feb;7(2):173-8. PubMed PMID: 8822200.

12: Oude Weernink PA, Verheul E, Kerkhof E, van Veelen CW, Rijksen G. Inhibitors of protein tyrosine phosphorylation reduce the proliferation of two human glioma cell lines. Neurosurgery. 1996 Jan;38(1):108-13; discussion 113-4. PubMed PMID: 8747958.

13: Kumar N, Windisch V, Ammon HL. Photoinstability of some tyrphostin drugs: chemical consequences of crystallinity. Pharm Res. 1995 Nov;12(11):1708-15. PubMed PMID: 8592674.

14: Xian W, Kiguchi K, Imamoto A, Rupp T, Zilberstein A, DiGiovanni J. Activation of the epidermal growth factor receptor by skin tumor promoters and in skin tumors from SENCAR mice. Cell Growth Differ. 1995 Nov;6(11):1447-55. PubMed PMID: 8562483.

15: Piontek M, Hengels KJ, Porschen R, Strohmeyer G. Antiproliferative effect of tyrosine kinase inhibitors in epidermal growth factor-stimulated growth of human gastric cancer cells. Anticancer Res. 1993 Nov-Dec;13(6A):2119-23. PubMed PMID: 8297123.

16: Reddy KB, Mangold GL, Tandon AK, Yoneda T, Mundy GR, Zilberstein A, Osborne CK. Inhibition of breast cancer cell growth in vitro by a tyrosine kinase inhibitor. Cancer Res. 1992 Jul 1;52(13):3636-41. PubMed PMID: 1617636.

17: Yoneda T, Lyall RM, Alsina MM, Persons PE, Spada AP, Levitzki A, Zilberstein A, Mundy GR. The antiproliferative effects of tyrosine kinase inhibitors tyrphostins on a human squamous cell carcinoma in vitro and in nude mice. Cancer Res. 1991 Aug 15;51(16):4430-5. PubMed PMID: 1651159.