BIO-013077-01
featured

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H581062

CAS#: 746667-48-1

Description: BIO-013077-01, Novel potent antagonist of the TGFbeta family type I receptors, Alk5 and/or Alk4.


Chemical Structure

img
BIO-013077-01
CAS# 746667-48-1

Theoretical Analysis

Hodoodo Cat#: H581062
Name: BIO-013077-01
CAS#: 746667-48-1
Chemical Formula: C17H13N5
Exact Mass: 287.12
Molecular Weight: 287.330
Elemental Analysis: C, 71.06; H, 4.56; N, 24.37

Price and Availability

Size Price Availability Quantity
50mg USD 250 2 weeks
100mg USD 450 2 weeks
200mg USD 750 2 weeks
500mg USD 1650 2 weeks
1g USD 2950 2 weeks
2g USD 5250 2 weeks
Bulk inquiry

Synonym: BIO-013077-01; BIO 013077-01; BIO013077-01; BIO-013077; BIO 013077; BIO013077;

IUPAC/Chemical Name: 6-[3-(6-Methylpyridin-2-yl)-1H-pyrazol-4-yl]quinoxaline

InChi Key: VXJLYXCHOKEODY-UHFFFAOYSA-N

InChi Code: InChI=1S/C17H13N5/c1-11-3-2-4-15(21-11)17-13(10-20-22-17)12-5-6-14-16(9-12)19-8-7-18-14/h2-10H,1H3,(H,20,22)

SMILES Code: CC1=CC=CC(C2=NNC=C2C3=CC=C4N=CC=NC4=C3)=N1

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 287.33 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Koike R, Uchiyama T, Arimoto-Kobayashi S, Okamoto K, Negishi T. Increase of somatic cell mutations in oxidative damage-sensitive drosophila. Genes Environ. 2018 Jan 10;40:3. doi: 10.1186/s41021-017-0090-z. eCollection 2018. PubMed PMID: 29339978; PubMed Central PMCID: PMC5761132.

2: Carta A, Sanna G, Briguglio I, Madeddu S, Vitale G, Piras S, Corona P, Peana AT, Laurini E, Fermeglia M, Pricl S, Serra A, Carta E, Loddo R, Giliberti G. Quinoxaline derivatives as new inhibitors of coxsackievirus B5. Eur J Med Chem. 2017 Dec 27;145:559-569. doi: 10.1016/j.ejmech.2017.12.083. [Epub ahead of print] PubMed PMID: 29339251.

3: Li P, Zhang X, Zhang J, Yan Z, Zhang S, Chen S, Fang Y. A sensitive and selective immunoaffinity column clean up coupled to UPLC-MS/MS for determination of trace methyl-3-quinoxaline-2-carboxylic acid in animal tissues. J Chromatogr B Analyt Technol Biomed Life Sci. 2018 Jan 3;1074-1075:39-45. doi: 10.1016/j.jchromb.2018.01.001. [Epub ahead of print] PubMed PMID: 29331742.

4: Gali-Muhtasib HU, Diab-Assaf M, Haddadin MJ. Retraction Note to: Quinoxaline 1,4-dioxides induce G(2)/M cell cycle arrest and apoptosis in human colon cancer cells. Cancer Chemother Pharmacol. 2018 Jan 8. doi: 10.1007/s00280-017-3515-2. [Epub ahead of print] PubMed PMID: 29313066.

5: Ghanbarimasir Z, Bekhradnia A, Morteza-Semnani K, Rafiei A, Razzaghi-Asl N, Kardan M. Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents. Spectrochim Acta A Mol Biomol Spectrosc. 2017 Dec 29;194:21-35. doi: 10.1016/j.saa.2017.12.063. [Epub ahead of print] PubMed PMID: 29310028.

6: Alswah M, Bayoumi AH, Elgamal K, Elmorsy A, Ihmaid S, Ahmed HEA. Design, Synthesis and Cytotoxic Evaluation of Novel Chalcone Derivatives Bearing Triazolo[4,3-a]-quinoxaline Moieties as Potent Anticancer Agents with Dual EGFR Kinase and Tubulin Polymerization Inhibitory Effects. Molecules. 2017 Dec 27;23(1). pii: E48. doi: 10.3390/molecules23010048. PubMed PMID: 29280968.

7: Notari S, Tempestilli M, Fabbri G, Libertone R, Antinori A, Ammassari A, Agrati C. UPLC-MS/MS method for the simultaneous quantification of sofosbuvir, sofosbuvir metabolite (GS-331007) and daclatasvir in plasma of HIV/HCV co-infected patients. J Chromatogr B Analyt Technol Biomed Life Sci. 2018 Jan 15;1073:183-190. doi: 10.1016/j.jchromb.2017.12.018. Epub 2017 Dec 12. PubMed PMID: 29276983.

8: El-Attar MAZ, Elbayaa RY, Shaaban OG, Habib NS, Abdel Wahab AE, Abdelwahab IA, El-Hawash SAM. Design, synthesis, antibacterial evaluation and molecular docking studies of some new quinoxaline derivatives targeting dihyropteroate synthase enzyme. Bioorg Chem. 2017 Dec 5;76:437-448. doi: 10.1016/j.bioorg.2017.12.017. [Epub ahead of print] PubMed PMID: 29275262.

9: Whittemore TJ, White TA, Turro C. New Ligand Design Provides Delocalization and Promotes Strong Absorption throughout the Visible Region in a Ru(II) Complex. J Am Chem Soc. 2018 Jan 10;140(1):229-234. doi: 10.1021/jacs.7b09389. Epub 2017 Dec 20. PubMed PMID: 29260869.

10: Milić J, Zalibera M, Talaat D, Nomrowski J, Trapp N, Ruhlmann L, Boudon C, Wenger OS, Savitsky A, Lubitz W, Diederich F. Photoredox-Switchable Resorcin[4]arene Cavitands: Radical Control of Molecular Gripping Machinery via Hydrogen Bonding. Chemistry. 2017 Dec 18. doi: 10.1002/chem.201704788. [Epub ahead of print] PubMed PMID: 29251363.

11: Shahroosvand H, Eskandari M. Ultrafast interfacial charge transfer from the LUMO+1 in ruthenium(ii) polypyridyl quinoxaline-sensitized solar cells. Dalton Trans. 2018 Jan 2;47(2):561-576. doi: 10.1039/c7dt03769d. PubMed PMID: 29239438.

12: Tariq S, Alam O, Amir M. Synthesis, anti-inflammatory, p38α MAP kinase inhibitory activities and molecular docking studies of quinoxaline derivatives containing triazole moiety. Bioorg Chem. 2017 Dec 2;76:343-358. doi: 10.1016/j.bioorg.2017.12.003. [Epub ahead of print] PubMed PMID: 29227918.

13: Wang HC, Li QY, Yin HB, Ren X, Yao K, Zheng Y, Xu YX. Synergistic Effects of Selenophene and Extended Ladder-Type Donor Units for Efficient Polymer Solar Cells. Macromol Rapid Commun. 2018 Jan;39(2). doi: 10.1002/marc.201700483. Epub 2017 Dec 7. PubMed PMID: 29215760.

14: Tariq S, Somakala K, Amir M. Quinoxaline: An insight into the recent pharmacological advances. Eur J Med Chem. 2018 Jan 1;143:542-557. doi: 10.1016/j.ejmech.2017.11.064. Epub 2017 Nov 24. Review. PubMed PMID: 29207337.

15: Rivera G, Ahmad Shah SS, Arrieta-Baez D, Palos I, Mongue A, Sánchez-Torres LE. Esters of Quinoxaline 1`4-Di-N-oxide with Cytotoxic Activity on Tumor Cell Lines Based on NCI-60 Panel. Iran J Pharm Res. 2017 Summer;16(3):953-965. PubMed PMID: 29201086; PubMed Central PMCID: PMC5610751.

16: Huang LL, Qiu YM, Sun LL, Li J, Pan YH, Wang YL, Yuan ZH. Dietary exposure assessment of cyadox based on tissue depletion of cyadox and its major metabolites in pigs, chickens, and carp. J Vet Pharmacol Ther. 2018 Feb;41(1):125-136. doi: 10.1111/jvp.12440. Epub 2017 Dec 1. PubMed PMID: 29194660.

17: Qi J, Dong H, Huang J, Zhang S, Niu L, Zhang Y, Wang J. Synthesis and biological evaluation of N-substituted 3-oxo-1,2,3,4-tetrahydro-quinoxaline-6-carboxylic acid derivatives as tubulin polymerization inhibitors. Eur J Med Chem. 2018 Jan 1;143:8-20. doi: 10.1016/j.ejmech.2017.08.018. Epub 2017 Aug 7. PubMed PMID: 29172084.

18: Shao Z, Han Z, Zhang J, Zhang Y, Wang S. Inhibition effects of flavonoids on 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline formation and alkoxy radical scavenging capabilities of flavonoids in a model system. J Sci Food Agric. 2017 Nov 21. doi: 10.1002/jsfa.8785. [Epub ahead of print] PubMed PMID: 29160907.

19: Chacón-Vargas KF, Andrade-Ochoa S, Nogueda-Torres B, Juárez-Ramírez DC, Lara-Ramírez EE, Mondragón-Flores R, Monge A, Rivera G, Sánchez-Torres LE. Isopropyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives induce regulated necrosis-like cell death on Leishmania (Leishmania) mexicana. Parasitol Res. 2018 Jan;117(1):45-58. doi: 10.1007/s00436-017-5635-3. Epub 2017 Nov 20. PubMed PMID: 29159705.

20: Mielcke TR, Muradás TC, Filippi-Chiela EC, Amaral MEA, Kist LW, Bogo MR, Mascarello A, Neuenfeldt PD, Nunes RJ, Campos MM. Mechanisms underlying the antiproliferative effects of a series of quinoxaline-derived chalcones. Sci Rep. 2017 Nov 20;7(1):15850. doi: 10.1038/s41598-017-16199-3. PubMed PMID: 29158524; PubMed Central PMCID: PMC5696528.