UPR-IN-17#

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H562272

CAS#: 709621-32-9

Description: UPR-IN-17# is a potent pan-inhibitor of the unfolded protein response (UPR).


Chemical Structure

img
UPR-IN-17#
CAS# 709621-32-9

Theoretical Analysis

Hodoodo Cat#: H562272
Name: UPR-IN-17#
CAS#: 709621-32-9
Chemical Formula: C23H22ClN3O3S
Exact Mass: 455.11
Molecular Weight: 455.950
Elemental Analysis: C, 60.59; H, 4.86; Cl, 7.77; N, 9.22; O, 10.53; S, 7.03

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @hodoodo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: UPR-IN-17#; UPR IN 17#; UPR inhibitor 17#; UPR inhibitor-17#;

IUPAC/Chemical Name: N-{3-Chloro-4-[4-(thiophene-2-carbonyl)-piperazin-1-yl]-phenyl}-2-phenoxy-acetamide

InChi Key: DXBNCECXWITYOR-UHFFFAOYSA-N

InChi Code: InChI=1S/C23H22ClN3O3S/c24-19-15-17(25-22(28)16-30-18-5-2-1-3-6-18)8-9-20(19)26-10-12-27(13-11-26)23(29)21-7-4-14-31-21/h1-9,14-15H,10-13,16H2,(H,25,28)

SMILES Code: O=C(NC1=CC=C(N2CCN(C(C3=CC=CS3)=O)CC2)C(Cl)=C1)COC4=CC=CC=C4

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 455.95 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Chen D, Dixon BJ, Doycheva DM, Li B, Zhang Y, Hu Q, He Y, Guo Z, Nowrangi D, Flores J, Filippov V, Zhang JH, Tang J. IRE1α inhibition decreased TXNIP/NLRP3 inflammasome activation through miR-17-5p after neonatal hypoxic-ischemic brain injury in rats. J Neuroinflammation. 2018 Feb 2;15(1):32. doi: 10.1186/s12974-018-1077-9. PubMed PMID: 29394934; PubMed Central PMCID: PMC5797348.

2: Lešnik S, Škrlj B, Eržen N, Bren U, Gobec S, Konc J, Janežič D. BoBER: web interface to the base of bioisosterically exchangeable replacements. J Cheminform. 2017 Dec 12;9(1):62. doi: 10.1186/s13321-017-0251-x. PubMed PMID: 29234984; PubMed Central PMCID: PMC5727005.

3: Tillotson J, Kedzior M, Guimarães L, Ross AB, Peters TL, Ambrose AJ, Schmidlin CJ, Zhang DD, Costa-Lotufo LV, Rodríguez AD, Schatz JH, Chapman E. ATP-competitive, marine derived natural products that target the DEAD box helicase, eIF4A. Bioorg Med Chem Lett. 2017 Sep 1;27(17):4082-4085. doi: 10.1016/j.bmcl.2017.07.045. Epub 2017 Jul 19. PubMed PMID: 28757063; PubMed Central PMCID: PMC5593424.

4: Graner AN, Hellwinkel JE, Lencioni AM, Madsen HJ, Harland TA, Marchando P, Nguyen GJ, Wang M, Russell LM, Bemis LT, Anchordoquy TJ, Graner MW. HSP90 inhibitors in the context of heat shock and the unfolded protein response: effects on a primary canine pulmonary adenocarcinoma cell line. Int J Hyperthermia. 2016 Dec 20:1-15. doi: 10.1080/02656736.2016.1256503. [Epub ahead of print] PubMed PMID: 27829290; PubMed Central PMCID: PMC5675827.

5: Longo M, Spinelli R, D'Esposito V, Zatterale F, Fiory F, Nigro C, Raciti GA, Miele C, Formisano P, Beguinot F, Di Jeso B. Pathologic endoplasmic reticulum stress induced by glucotoxic insults inhibits adipocyte differentiation and induces an inflammatory phenotype. Biochim Biophys Acta. 2016 Jun;1863(6 Pt A):1146-56. doi: 10.1016/j.bbamcr.2016.02.019. Epub 2016 Mar 2. PubMed PMID: 26940722.

6: Mhaidat NM, Al-Balas QA, Alzoubi KH, AlEjielat RF. Potassium-3-beta-hydroxy-20-oxopregn-5-en-17-alpha-yl sulfate: a novel inhibitor of 78 kDa glucose-regulated protein. Onco Targets Ther. 2016 Feb 3;9:627-34. doi: 10.2147/OTT.S97328. eCollection 2016. PubMed PMID: 26893572; PubMed Central PMCID: PMC4745961.

7: Waller DD, Jansen G, Golizeh M, Martel-Lorion C, Dejgaard K, Shiao TC, Mancuso J, Tsantrizos YS, Roy R, Sebag M, Sleno L, Thomas DY. A Covalent Cysteine-Targeting Kinase Inhibitor of Ire1 Permits Allosteric Control of Endoribonuclease Activity. Chembiochem. 2016 May 3;17(9):843-51. doi: 10.1002/cbic.201500485. Epub 2016 Mar 7. PubMed PMID: 26792008.

8: Qu M, Shen W. [Role of PI3K/Akt pathway in endoplasmic reticulum stress and apoptosis induced by saturated fatty acid in human steatotic hepatocytes]. Zhonghua Gan Zang Bing Za Zhi. 2015 Mar;23(3):194-9. doi: 10.3760/cma.j.issn.1007-3418.2015.03.008. Chinese. PubMed PMID: 25938832.

9: Huang H, Liu H, Liu C, Fan L, Zhang X, Gao A, Hu X, Zhang K, Cao X, Jiang K, Zhou Y, Hou J, Nan F, Li J. Disruption of the unfolded protein response (UPR) by lead compound selectively suppresses cancer cell growth. Cancer Lett. 2015 May 1;360(2):257-68. doi: 10.1016/j.canlet.2015.02.029. Epub 2015 Feb 23. PubMed PMID: 25721085.

10: Evangelisti C, Evangelisti C, Teti G, Chiarini F, Falconi M, Melchionda F, Pession A, Bertaina A, Locatelli F, McCubrey JA, Beak DJ, Bittman R, Pyne S, Pyne NJ, Martelli AM. Assessment of the effect of sphingosine kinase inhibitors on apoptosis,unfolded protein response and autophagy of T-cell acute lymphoblastic leukemia cells; indications for novel therapeutics. Oncotarget. 2014 Sep 15;5(17):7886-901. PubMed PMID: 25226616; PubMed Central PMCID: PMC4202168.

11: Carballeira NM, Bwalya AG, Itoe MA, Andricopulo AD, Cordero-Maldonado ML, Kaiser M, Mota MM, Crawford AD, Guido RV, Tasdemir D. 2-Octadecynoic acid as a dual life stage inhibitor of Plasmodium infections and plasmodial FAS-II enzymes. Bioorg Med Chem Lett. 2014 Sep 1;24(17):4151-7. doi: 10.1016/j.bmcl.2014.07.050. Epub 2014 Jul 24. PubMed PMID: 25103602; PubMed Central PMCID: PMC4146677.

12: Tarus B, Nguyen PH, Berthoumieu O, Faller P, Doig AJ, Derreumaux P. Molecular structure of the NQTrp inhibitor with the Alzheimer Aβ1-28 monomer. Eur J Med Chem. 2015 Feb 16;91:43-50. doi: 10.1016/j.ejmech.2014.07.002. Epub 2014 Jul 1. PubMed PMID: 25011560.

13: Born EJ, Hartman SV, Holstein SA. Targeting HSP90 and monoclonal protein trafficking modulates the unfolded protein response, chaperone regulation and apoptosis in myeloma cells. Blood Cancer J. 2013 Dec 6;3:e167. doi: 10.1038/bcj.2013.64. PubMed PMID: 24317089; PubMed Central PMCID: PMC3877421.

14: Afonyushkin T, Oskolkova OV, Bochkov VN. Permissive role of miR-663 in induction of VEGF and activation of the ATF4 branch of unfolded protein response in endothelial cells by oxidized phospholipids. Atherosclerosis. 2012 Nov;225(1):50-5. doi: 10.1016/j.atherosclerosis.2012.06.016. Epub 2012 Jun 23. PubMed PMID: 22776647.

15: Javadov S, Rajapurohitam V, Kilić A, Hunter JC, Zeidan A, Said Faruq N, Escobales N, Karmazyn M. Expression of mitochondrial fusion-fission proteins during post-infarction remodeling: the effect of NHE-1 inhibition. Basic Res Cardiol. 2011 Jan;106(1):99-109. doi: 10.1007/s00395-010-0122-3. Epub 2010 Oct 1. PubMed PMID: 20886221.

16: Nakka VP, Gusain A, Raghubir R. Endoplasmic reticulum stress plays critical role in brain damage after cerebral ischemia/reperfusion in rats. Neurotox Res. 2010 Feb;17(2):189-202. doi: 10.1007/s12640-009-9110-5. PubMed PMID: 19763736.

17: Gu H, Chen X, Gao G, Dong H. Caspase-2 functions upstream of mitochondria in endoplasmic reticulum stress-induced apoptosis by bortezomib in human myeloma cells. Mol Cancer Ther. 2008 Aug;7(8):2298-307. doi: 10.1158/1535-7163.MCT-08-0186. PubMed PMID: 18723477.

18: Chandar J, Abitbol C, Montané B, Zilleruelo G. Angiotensin blockade as sole treatment for proteinuric kidney disease in children. Nephrol Dial Transplant. 2007 May;22(5):1332-7. Epub 2007 Feb 13. PubMed PMID: 17299000.

19: DuRose JB, Tam AB, Niwa M. Intrinsic capacities of molecular sensors of the unfolded protein response to sense alternate forms of endoplasmic reticulum stress. Mol Biol Cell. 2006 Jul;17(7):3095-107. Epub 2006 May 3. PubMed PMID: 16672378; PubMed Central PMCID: PMC1483043.

20: Zhang QX, Feng R, Zhang W, Ding Y, Yang JY, Liu GH. Role of stress-activated MAP kinase P38 in cisplatin- and DTT-induced apoptosis of the esophageal carcinoma cell line Eca109. World J Gastroenterol. 2005 Aug 7;11(29):4451-6. PubMed PMID: 16052670; PubMed Central PMCID: PMC4398690.