Rhodamine 110 chloride
featured

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H341324

CAS#: 13558-31-1 (chloride)

Description: Rhodamine 110 chloride (R110) is a laser grade dye. Rhodamine 110 chloride has been used for the synthesis of the rhodamine 110 octadecyl ester .


Chemical Structure

img
Rhodamine 110 chloride
CAS# 13558-31-1 (chloride)

Theoretical Analysis

Hodoodo Cat#: H341324
Name: Rhodamine 110 chloride
CAS#: 13558-31-1 (chloride)
Chemical Formula: C20H15ClN2O3
Exact Mass: 366.08
Molecular Weight: 366.800
Elemental Analysis: C, 65.49; H, 4.12; Cl, 9.66; N, 7.64; O, 13.09

Price and Availability

Size Price Availability Quantity
250mg USD 350 2 Weeks
1g USD 750 2 Weeks
Bulk inquiry

Related CAS #: 82182-00-1 (cation)    

Synonym: Rhodamine 110; R 110; RH 110; Rhodamine 560; Rhodamine N.

IUPAC/Chemical Name: Xanthylium, 3,6-diamino-9-(2-carboxyphenyl)-, chloride

InChi Key: MYIOYATURDILJN-UHFFFAOYSA-N

InChi Code: InChI=1S/C20H14N2O3.ClH/c21-11-5-7-15-17(9-11)25-18-10-12(22)6-8-16(18)19(15)13-3-1-2-4-14(13)20(23)24;/h1-10H,21-22H2;1H

SMILES Code: O=C(C1=CC=CC=C1C2=C3C=CC(N)=CC3=[O+]C4=C2C=CC(N)=C4)O.[Cl-]

Appearance: Solid powder

Purity: 70~80% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 366.80 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Abney KK, Ramos-Hunter SJ, Romaine IM, Godwin JS, Sulikowski GA, Weaver CD. Selective Activation of N,N'-Diacyl Rhodamine Pro-fluorophores Paired with Releasing Enzyme, Porcine Liver Esterase (PLE). Chemistry. 2018 Apr 21. doi: 10.1002/chem.201801409. [Epub ahead of print] PubMed PMID: 29679472.

2: Jiang SH, Cheng YY, Huo TI, Tsai TH. Pharmacokinetics of Rhodamine 110 and Its Organ Distribution in Rats. J Agric Food Chem. 2017 Sep 6;65(35):7797-7804. doi: 10.1021/acs.jafc.7b02685. Epub 2017 Aug 21. PubMed PMID: 28793756.

3: Swiderska KW, Szlachcic A, Czyrek A, Zakrzewska M, Otlewski J. Site-specific conjugation of fibroblast growth factor 2 (FGF2) based on incorporation of alkyne-reactive unnatural amino acid. Bioorg Med Chem. 2017 Jul 15;25(14):3685-3693. doi: 10.1016/j.bmc.2017.05.003. Epub 2017 May 5. PubMed PMID: 28522266.

4: Lee JH, Lee MJ. Isolation and Characterization of RNA Aptamers against a Proteasome-Associated Deubiquitylating Enzyme UCH37. Chembiochem. 2017 Jan 17;18(2):171-175. doi: 10.1002/cbic.201600515. Epub 2016 Dec 8. PubMed PMID: 27930845.

5: Zhang X, Poniewierski A, Jelińska A, Zagożdżon A, Wisniewska A, Hou S, Hołyst R. Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis. Soft Matter. 2016 Oct 4;12(39):8186-8194. PubMed PMID: 27714379.

6: Anciaux SK, Geiger M, Bowser MT. 3D Printed Micro Free-Flow Electrophoresis Device. Anal Chem. 2016 Aug 2;88(15):7675-82. doi: 10.1021/acs.analchem.6b01573. Epub 2016 Jul 15. PubMed PMID: 27377354.

7: Wu Y, Liu J, Ma J, Liu Y, Wang Y, Wu D. Ratiometric Nanothermometer Based on Rhodamine Dye-Incorporated F127-Melamine-Formaldehyde Polymer Nanoparticle: Preparation, Characterization, Wide-Range Temperature Sensing, and Precise Intracellular Thermometry. ACS Appl Mater Interfaces. 2016 Jun 15;8(23):14396-405. doi: 10.1021/acsami.6b03366. Epub 2016 Jun 2. PubMed PMID: 27197838.

8: Gooch J, Abbate V, Daniel B, Frascione N. Solid-phase synthesis of Rhodamine-110 fluorogenic substrates and their application in forensic analysis. Analyst. 2016 Apr 21;141(8):2392-5. doi: 10.1039/c6an00686h. Epub 2016 Mar 30. PubMed PMID: 27027574.

9: Mladic M, Zietek BM, Iyer JK, Hermarij P, Niessen WM, Somsen GW, Kini RM, Kool J. At-line nanofractionation with parallel mass spectrometry and bioactivity assessment for the rapid screening of thrombin and factor Xa inhibitors in snake venoms. Toxicon. 2016 Feb;110:79-89. doi: 10.1016/j.toxicon.2015.12.008. Epub 2015 Dec 19. PubMed PMID: 26708656.

10: Jašík J, Navrátil R, Němec I, Roithová J. Infrared and Visible Photodissociation Spectra of Rhodamine Ions at 3 K in the Gas Phase. J Phys Chem A. 2015 Dec 24;119(51):12648-55. doi: 10.1021/acs.jpca.5b08462. Epub 2015 Dec 7. PubMed PMID: 26595323.

11: Sueyoshi K, Nogawa Y, Sugawara K, Endo T, Hisamoto H. Highly Sensitive and Multiple Enzyme Activity Assay Using Reagent-release Capillary-Isoelectric Focusing with Rhodamine 110-based Substrates. Anal Sci. 2015;31(11):1155-61. doi: 10.2116/analsci.31.1155. PubMed PMID: 26561260.

12: Prabhu SR, Dutt GB. Rotational Diffusion of Nonpolar and Ionic Solutes in 1-Alkyl-3-methylimidazolium Tetrafluoroborate-LiBF4 Mixtures: Does the Electrolyte Induce the Structure-Making or Structure-Breaking Effect? J Phys Chem B. 2015 Dec 3;119(48):15040-5. doi: 10.1021/acs.jpcb.5b10047. Epub 2015 Nov 19. PubMed PMID: 26551307.

13: Geiger M, Harstad RK, Bowser MT. Effect of Surface Adsorption on Temporal and Spatial Broadening in Micro Free Flow Electrophoresis. Anal Chem. 2015 Dec 1;87(23):11682-90. doi: 10.1021/acs.analchem.5b02262. Epub 2015 Nov 9. PubMed PMID: 26496470.

14: Hedde PN, Ranjit S, Gratton E. 3D fluorescence anisotropy imaging using selective plane illumination microscopy. Opt Express. 2015 Aug 24;23(17):22308-17. doi: 10.1364/OE.23.022308. PubMed PMID: 26368202; PubMed Central PMCID: PMC4646523.

15: Haaß W, Kleiner H, Müller MC, Hofmann WK, Fabarius A, Seifarth W. Measurement of separase proteolytic activity in single living cells by a fluorogenic flow cytometry assay. PLoS One. 2015 Aug 12;10(8):e0133769. doi: 10.1371/journal.pone.0133769. eCollection 2015. PubMed PMID: 26267133; PubMed Central PMCID: PMC4534294.

16: Prabhu SR, Dutt GB. Rotational Diffusion of Charged and Nondipolar Solutes in Ionic Liquid-Organic Solvent Mixtures: Evidence for Stronger Specific Solute-Solvent Interactions in Presence of Organic Solvent. J Phys Chem B. 2015 Aug 20;119(33):10720-6. doi: 10.1021/acs.jpcb.5b06297. Epub 2015 Aug 7. PubMed PMID: 26218101.

17: Itoh N, Santa T, Kato M. Rapid and mild purification method for nanoparticles from a dispersed solution using a monolithic silica disk. J Chromatogr A. 2015 Jul 24;1404:141-5. doi: 10.1016/j.chroma.2015.05.047. Epub 2015 May 28. PubMed PMID: 26058950.

18: Wellman SM, Jockusch RA. Moving in on the Action: An Experimental Comparison of Fluorescence Excitation and Photodissociation Action Spectroscopy. J Phys Chem A. 2015 Jun 18;119(24):6333-8. doi: 10.1021/acs.jpca.5b04835. Epub 2015 Jun 9. PubMed PMID: 26020810.

19: Antonenko YN, Nechaeva NL, Baksheeva VE, Rokitskaya TI, Plotnikov EY, Kotova EA, Zorov DB. Intramitochondrial accumulation of cationic Atto520-biotin proceeds via voltage-dependent slow permeation through lipid membrane. Biochim Biophys Acta. 2015 Jun;1848(6):1277-84. doi: 10.1016/j.bbamem.2015.02.028. Epub 2015 Mar 6. PubMed PMID: 25753112.

20: Geng H, Zhang XF. Spectroscopic insights on selfassembly and excited state interactions between rhodamine and phthalocyanine molecules. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Mar 15;139:13-9. doi: 10.1016/j.saa.2014.12.010. Epub 2014 Dec 16. PubMed PMID: 25546492.