Tetrabutylphosphonium cation

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H596026

CAS#: 15853-37-9

Description: Tetrabutylphosphonium cation is a pale orange solid with the formula [N(C4H9)4]Br3. It is a salt of the lipophilic tetrabutylammonium cation and the linear tribromide anion. The salt is sometimes used as a reagent used in organic synthesis as a conveniently weighable, solid source of bromine.


Chemical Structure

img
Tetrabutylphosphonium cation
CAS# 15853-37-9

Theoretical Analysis

Hodoodo Cat#: H596026
Name: Tetrabutylphosphonium cation
CAS#: 15853-37-9
Chemical Formula: C16H36P+
Exact Mass: 0.00
Molecular Weight: 259.430
Elemental Analysis: C, 74.07; H, 13.99; P, 11.94

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @hodoodo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: Tetrabutylphosphonium cation; Tetra-n-butylphosphonium; J279H; Phosphonium, tetrabutyl-; Tetrabutylphosphonium ion; Tetrabutylphosphonium;

IUPAC/Chemical Name: tetrabutylphosphonium

InChi Key: BJQWBACJIAKDTJ-UHFFFAOYSA-N

InChi Code: InChI=1S/C16H36P/c1-5-9-13-17(14-10-6-2,15-11-7-3)16-12-8-4/h5-16H2,1-4H3/q+1

SMILES Code: CCCC[P+](CCCC)(CCCC)CCCC

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 259.43 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Zhang T, Schwedtmann K, Weigand JJ, Doert T, Ruck M. Understanding the chemical reactivity of phosphonium-based ionic liquids with tellurium. Chemistry. 2018 May 15. doi: 10.1002/chem.201800320. [Epub ahead of print] PubMed PMID: 29762892.

2: King AWT, Mäkelä V, Kedzior SA, Laaksonen T, Partl GJ, Heikkinen S, Koskela H, Heikkinen HA, Holding AJ, Cranston ED, Kilpeläinen I. Liquid-State NMR Analysis of Nanocelluloses. Biomacromolecules. 2018 Apr 11. doi: 10.1021/acs.biomac.8b00295. [Epub ahead of print] PubMed PMID: 29614220.

3: Miao J, Wang X, Fan Y, Li J, Zhang L, Hu G, He C, Jin C. Determination of total mercury in seafood by ion-selective electrodes based on a thiol functionalized ionic liquid. J Food Drug Anal. 2018 Apr;26(2):670-677. doi: 10.1016/j.jfda.2017.08.004. Epub 2017 Sep 22. PubMed PMID: 29567237.

4: Brand S, Schlüsener MP, Albrecht D, Kunkel U, Strobel C, Grummt T, Ternes TA. Quaternary (triphenyl-) phosphonium compounds: Environmental behavior and toxicity. Water Res. 2018 Jun 1;136:207-219. doi: 10.1016/j.watres.2018.02.032. Epub 2018 Mar 2. PubMed PMID: 29518585.

5: Ma L, Tang H, Wu P. Volume Phase Transition Mechanism of Poly[di(ethylene glycol)ethyl ether acrylate]-Based Microgels Involving a Thermosensitive Poly(ionic liquid). Langmuir. 2017 Oct 31;33(43):12326-12335. doi: 10.1021/acs.langmuir.7b02884. Epub 2017 Oct 16. PubMed PMID: 28972775.

6: Otero I, Lepre LF, Dequidt A, Husson P, Costa Gomes MF. How Does the Addition of a Third Ion Affect the Molecular Interactions and the Thermodynamic Properties of Acetate-Based Ionic Liquids? J Phys Chem B. 2017 Oct 19;121(41):9725-9736. doi: 10.1021/acs.jpcb.7b06452. Epub 2017 Oct 6. PubMed PMID: 28889750.

7: Moura L, Brown LC, Blesic M, Holbrey JD. LCST Phase Behavior and Complexation with Water of an Ionic Liquid Incorporating the 5-Phenyltetrazolate Anion. Chemphyschem. 2017 Dec 6;18(23):3384-3389. doi: 10.1002/cphc.201700942. Epub 2017 Oct 23. PubMed PMID: 28851007.

8: Nitta A, Morita T, Nishikawa K, Koga Y. Mixing scheme of an aqueous solution of tetrabutylphosphonium trifluoroacetate in the water-rich region. Phys Chem Chem Phys. 2017 Jun 28;19(25):16888-16896. doi: 10.1039/c7cp02997g. PubMed PMID: 28627540.

9: Pepper JT, Maheshwari P, Ziemienowicz A, Hazendonk P, Kovalchuk I, Eudes F. Tetrabutylphosphonium Bromide Reduces Size and Polydispersity Index of Tat(2):siRNA Nano-Complexes for Triticale RNAi. Front Mol Biosci. 2017 May 16;4:30. doi: 10.3389/fmolb.2017.00030. eCollection 2017. PubMed PMID: 28560213; PubMed Central PMCID: PMC5432540.

10: Bhawawet N, Essner JB, Wagle DV, Baker GA. Ionic Liquid Anion Controlled Nanoscale Gold Morphology Grown at a Liquid Interface. Langmuir. 2017 Jun 20;33(24):6029-6037. doi: 10.1021/acs.langmuir.7b00296. Epub 2017 Jun 8. PubMed PMID: 28535055.

11: An X, Du X, Duan D, Shi L, Hao X, Lu H, Guan G, Peng C. An absorption mechanism and polarity-induced viscosity model for CO(2) capture using hydroxypyridine-based ionic liquids. Phys Chem Chem Phys. 2017 Jan 4;19(2):1134-1142. doi: 10.1039/c6cp07209g. PubMed PMID: 27942645.

12: Li C, Sablong RJ, Koning CE. Chemoselective Alternating Copolymerization of Limonene Dioxide and Carbon Dioxide: A New Highly Functional Aliphatic Epoxy Polycarbonate. Angew Chem Int Ed Engl. 2016 Sep 12;55(38):11572-6. doi: 10.1002/anie.201604674. Epub 2016 Aug 16. PubMed PMID: 27529815.

13: Zhao Y, Wu Y, Yuan G, Hao L, Gao X, Yang Z, Yu B, Zhang H, Liu Z. Azole-Anion-Based Aprotic Ionic Liquids: Functional Solvents for Atmospheric CO(2) Transformation into Various Heterocyclic Compounds. Chem Asian J. 2016 Oct 6;11(19):2735-2740. doi: 10.1002/asia.201600281. Epub 2016 Jun 21. PubMed PMID: 27214063.

14: Pace S, Ceballos SJ, Harrold D, Stannard W, Simmons BA, Singer SW, Thelen MP, VanderGheynst JS. Enrichment of microbial communities tolerant to the ionic liquids tetrabutylphosphonium chloride and tributylethylphosphonium diethylphosphate. Appl Microbiol Biotechnol. 2016 Jun;100(12):5639-52. doi: 10.1007/s00253-016-7525-5. Epub 2016 Apr 22. PubMed PMID: 27102129.

15: Wang G, Wu P. Unusual Phase Transition Behavior of Poly(N-isopropylacrylamide)-co-Poly(tetrabutylphosphonium styrenesulfonate) in Water: Mild and Linear Changes in the Poly(N-isopropylacrylamide) Part. Langmuir. 2016 Apr 19;32(15):3728-36. doi: 10.1021/acs.langmuir.6b00392. Epub 2016 Apr 5. PubMed PMID: 27022971.

16: Costa SP, Martins BS, Pinto PC, Saraiva ML. Automated cytochrome c oxidase bioassay developed for ionic liquids' toxicity assessment. J Hazard Mater. 2016 May 15;309:165-72. doi: 10.1016/j.jhazmat.2016.02.005. Epub 2016 Feb 3. PubMed PMID: 26894289.

17: Mondal SS, Marquardt D, Janiak C, Holdt HJ. Use of a 4,5-dicyanoimidazolate anion based ionic liquid for the synthesis of iron and silver nanoparticles. Dalton Trans. 2016 Apr 7;45(13):5476-83. doi: 10.1039/c6dt00225k. Epub 2016 Feb 17. PubMed PMID: 26885778.

18: Lau BB, Luis ET, Hossain MM, Hart WE, Cencia-Lay B, Black JJ, To TQ, Aldous L. Facile, room-temperature pre-treatment of rice husks with tetrabutylphosphonium hydroxide: Enhanced enzymatic and acid hydrolysis yields. Bioresour Technol. 2015 Dec;197:252-9. doi: 10.1016/j.biortech.2015.08.056. Epub 2015 Aug 22. PubMed PMID: 26342336.

19: Morita T, Miki K, Nitta A, Ohgi H, Westh P. Effects of constituent ions of a phosphonium-based ionic liquid on molecular organization of H2O as probed by 1-propanol: tetrabutylphosphonium and trifluoroacetate ions. Phys Chem Chem Phys. 2015 Sep 14;17(34):22170-8. doi: 10.1039/c5cp02329g. Epub 2015 Aug 4. PubMed PMID: 26239281.

20: Furukawa S, Fukuyama T, Matsui A, Kuratsu M, Nakaya R, Ineyama T, Ueda H, Ryu I. Coupling-Reagent-Free Synthesis of Dipeptides and Tripeptides Using Amino Acid Ionic Liquids. Chemistry. 2015 Aug 17;21(34):11980-3. doi: 10.1002/chem.201501783. Epub 2015 Jul 17. PubMed PMID: 26213326.