Isoproturon-diflufenican mixt.

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H596186

CAS#: 100920-69-2

Description: Isoproturon-diflufenican mixt. is a herbicide.


Chemical Structure

img
Isoproturon-diflufenican mixt.
CAS# 100920-69-2

Theoretical Analysis

Hodoodo Cat#: H596186
Name: Isoproturon-diflufenican mixt.
CAS#: 100920-69-2
Chemical Formula: C31H29F5N4O3
Exact Mass: 600.22
Molecular Weight: 600.590
Elemental Analysis: C, 62.00; H, 4.87; F, 15.82; N, 9.33; O, 7.99

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @hodoodo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: Isoproturon-diflufenican mixt.; Blutron; Blutron plus; FR 1288; FR-1288; FR1288; Javelin;

IUPAC/Chemical Name: N-(2,4-difluorophenyl)-2-(3-(trifluoromethyl)phenoxy)nicotinamide compound with 3-(4-isopropylphenyl)-1,1-dimethylurea (1:1)

InChi Key: RZSCFTDHFNHMOR-UHFFFAOYSA-N

InChi Code: InChI=1S/C19H11F5N2O2.C12H18N2O/c20-12-6-7-16(15(21)10-12)26-17(27)14-5-2-8-25-18(14)28-13-4-1-3-11(9-13)19(22,23)24;1-9(2)10-5-7-11(8-6-10)13-12(15)14(3)4/h1-10H,(H,26,27);5-9H,1-4H3,(H,13,15)

SMILES Code: O=C(NC1=CC=C(C(C)C)C=C1)N(C)C.O=C(C2=CC=CN=C2OC3=CC=CC(C(F)(F)F)=C3)NC4=CC=C(F)C=C4F

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 600.59 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Ahrens L, Daneshvar A, Lau AE, Kreuger J. Concentrations, fluxes and field calibration of passive water samplers for pesticides and hazard-based risk assessment. Sci Total Environ. 2018 May 11;637-638:835-843. doi: 10.1016/j.scitotenv.2018.05.039. [Epub ahead of print] PubMed PMID: 29758438.

2: Karas PA, Baguelin C, Pertile G, Papadopoulou ES, Nikolaki S, Storck V, Ferrari F, Trevisan M, Ferrarini A, Fornasier F, Vasileiadis S, Tsiamis G, Martin-Laurent F, Karpouzas DG. Assessment of the impact of three pesticides on microbial dynamics and functions in a lab-to-field experimental approach. Sci Total Environ. 2018 May 11;637-638:636-646. doi: 10.1016/j.scitotenv.2018.05.073. [Epub ahead of print] PubMed PMID: 29758420.

3: Yan X, Huang JW, Xu XH, Chen D, Xie XT, Tao Q, He J, Jiang JD. Enhanced and complete removal of phenylurea herbicides by combinational transgenic plant-microbial remediation. Appl Environ Microbiol. 2018 May 11. pii: AEM.00273-18. doi: 10.1128/AEM.00273-18. [Epub ahead of print] PubMed PMID: 29752264.

4: Vanraes P, Wardenier N, Surmont P, Lynen F, Nikiforov A, Van Hulle SWH, Leys C, Bogaerts A. Removal of alachlor, diuron and isoproturon in water in a falling film dielectric barrier discharge (DBD) reactor combined with adsorption on activated carbon textile: Reaction mechanisms and oxidation by-products. J Hazard Mater. 2018 May 3;354:180-190. doi: 10.1016/j.jhazmat.2018.05.007. [Epub ahead of print] PubMed PMID: 29751174.

5: Su M, Jia L, Wu X, Sun H. Residue investigation of some phenylureas and tebuthiuron herbicides in vegetables by ultra-performance liquid chromatography coupled with integrated selective accelerated solvent extraction-clean up in situ. J Sci Food Agric. 2018 Mar 24. doi: 10.1002/jsfa.9014. [Epub ahead of print] PubMed PMID: 29574757.

6: Liang X, Wang J, Wu Q, Wang C, Wang Z. Use of a hypercrosslinked triphenylamine polymer as an efficient adsorbent for the enrichment of phenylurea herbicides. J Chromatogr A. 2018 Feb 23;1538:1-7. doi: 10.1016/j.chroma.2018.01.033. PubMed PMID: 29397984.

7: Copin PJ, Chèvre N. Modelling the effects of PSII inhibitor pulse exposure on two algae in co-culture. Ecotoxicology. 2018 Mar;27(2):154-168. doi: 10.1007/s10646-017-1881-5. Epub 2017 Dec 12. PubMed PMID: 29234925.

8: Zhu X, Schroll R, Dörfler U, Chen B. Inoculation of soil with an Isoproturon degrading microbial community reduced the pool of "real non-extractable" Isoproturon residues. Ecotoxicol Environ Saf. 2018 Mar;149:182-189. doi: 10.1016/j.ecoenv.2017.11.037. Epub 2017 Nov 23. PubMed PMID: 29175344.

9: Gandar A, Laffaille P, Canlet C, Tremblay-Franco M, Gautier R, Perrault A, Gress L, Mormède P, Tapie N, Budzinski H, Jean S. Adaptive response under multiple stress exposure in fish: From the molecular to individual level. Chemosphere. 2017 Dec;188:60-72. doi: 10.1016/j.chemosphere.2017.08.089. Epub 2017 Aug 19. PubMed PMID: 28869847.

10: Wang Y, Li H, Feng G, Du L, Zeng D. Biodegradation of diuron by an endophytic fungus Neurospora intermedia DP8-1 isolated from sugarcane and its potential for remediating diuron-contaminated soils. PLoS One. 2017 Aug 15;12(8):e0182556. doi: 10.1371/journal.pone.0182556. eCollection 2017. PubMed PMID: 28809955; PubMed Central PMCID: PMC5557362.

11: Le TDH, Scharmüller A, Kattwinkel M, Kühne R, Schüürmann G, Schäfer RB. Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments. Ecotoxicol Environ Saf. 2017 Nov;145:135-141. doi: 10.1016/j.ecoenv.2017.07.027. Epub 2017 Jul 18. PubMed PMID: 28732296.

12: Esteves SM, Keck F, Almeida SFP, Figueira E, Bouchez A, Rimet F. Can we predict diatoms herbicide sensitivities with phylogeny? Influence of intraspecific and interspecific variability. Ecotoxicology. 2017 Oct;26(8):1065-1077. doi: 10.1007/s10646-017-1834-z. Epub 2017 Jul 6. PubMed PMID: 28685416.

13: Gaullier C, Dousset S, Billet D, Baran N. Is pesticide sorption by constructed wetland sediments governed by water level and water dynamics? Environ Sci Pollut Res Int. 2017 May 15. doi: 10.1007/s11356-017-9123-1. [Epub ahead of print] PubMed PMID: 28508331.

14: Gorito AM, Ribeiro AR, Almeida CMR, Silva AMT. A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environ Pollut. 2017 Aug;227:428-443. doi: 10.1016/j.envpol.2017.04.060. Epub 2017 May 6. Review. PubMed PMID: 28486186.

15: Boucheloukh H, Remache W, Parrino F, Sehili T, Mechakra H. The effect of natural iron oxide and oxalic acid on the photocatalytic degradation of isoproturon: a kinetics and analytical study. Photochem Photobiol Sci. 2017 May 17;16(5):759-765. doi: 10.1039/c6pp00441e. PubMed PMID: 28345701.

16: Dollinger J, Dagès C, Voltz M. Using fluorescent dyes as proxies to study herbicide removal by sorption in buffer zones. Environ Sci Pollut Res Int. 2017 Apr;24(12):11752-11763. doi: 10.1007/s11356-017-8703-4. Epub 2017 Mar 23. PubMed PMID: 28337625.

17: Vanraes P, Ghodbane H, Davister D, Wardenier N, Nikiforov A, Verheust YP, Van Hulle SWH, Hamdaoui O, Vandamme J, Van Durme J, Surmont P, Lynen F, Leys C. Removal of several pesticides in a falling water film DBD reactor with activated carbon textile: Energy efficiency. Water Res. 2017 Jun 1;116:1-12. doi: 10.1016/j.watres.2017.03.004. Epub 2017 Mar 6. PubMed PMID: 28292675.

18: Eissa S, Zourob M. Selection and Characterization of DNA Aptamers for Electrochemical Biosensing of Carbendazim. Anal Chem. 2017 Mar 7;89(5):3138-3145. doi: 10.1021/acs.analchem.6b04914. Epub 2017 Feb 10. PubMed PMID: 28264568.

19: Yotsova EK, Stefanov MA, Dobrikova AG, Apostolova EL. Different sensitivities of photosystem II in green algae and cyanobacteria to phenylurea and phenol-type herbicides: effect on electron donor side. Z Naturforsch C. 2017 Jul 14;72(7-8):315-324. doi: 10.1515/znc-2016-0089. PubMed PMID: 28258977.

20: Jeong Y, Schäffer A, Smith K. Equilibrium partitioning of organic compounds to OASIS HLB(®) as a function of compound concentration, pH, temperature and salinity. Chemosphere. 2017 May;174:297-305. doi: 10.1016/j.chemosphere.2017.01.116. Epub 2017 Jan 26. PubMed PMID: 28183055.