Epostatin

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H597298

CAS#: 181372-99-6

Description: Epostatin is a new inhibitor of dipeptidyl peptidase II (DPP-II, EC 3.4.14.2).


Chemical Structure

img
Epostatin
CAS# 181372-99-6

Theoretical Analysis

Hodoodo Cat#: H597298
Name: Epostatin
CAS#: 181372-99-6
Chemical Formula: C23H33N3O5
Exact Mass: 431.24
Molecular Weight: 431.530
Elemental Analysis: C, 64.02; H, 7.71; N, 9.74; O, 18.54

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @hodoodo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: Epostatin;

IUPAC/Chemical Name: ((2E,4E)-4-(2-hexyl-2,3,4,4a-tetrahydrocyclopenta[b]oxireno[2,3-c]pyridin-7(1aH)-ylidene)but-2-enoyl)-L-glutamine

InChi Key: GUSMHFARJHQRFN-NXPFCSJVSA-N

InChi Code: InChI=1S/C23H33N3O5/c1-2-3-4-5-7-15-14-25-18-12-10-16(23(18)21(15)31-23)8-6-9-20(28)26-17(22(29)30)11-13-19(24)27/h6,8-10,12,15,17-18,21,25H,2-5,7,11,13-14H2,1H3,(H2,24,27)(H,26,28)(H,29,30)/b9-6+,16-8+/t15?,17-,18?,21?,23?/m0/s1

SMILES Code: O=C(N)CC[C@@H](C(O)=O)NC(/C=C/C=C1C=CC2C(O3)\1C3C(CCCCCC)CN2)=O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.03.00

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 431.53 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Grzegorzewska AE, Winnicka H, Warchoł W, Mostowska A, Jagodziński PP. Correlations of indoleamine 2,3-dioxygenase, interferon-λ3, and anti-HBs antibodies in hemodialysis patients. Vaccine. 2018 Jun 20. pii: S0264-410X(18)30862-4. doi: 10.1016/j.vaccine.2018.06.034. [Epub ahead of print] PubMed PMID: 29935858.

2: Meijsen JJ, Rammos A, Campbell A, Hayward C, Porteous DJ, Deary IJ, Marioni RE, Nicodemus KK. Using tree-based methods for detection of gene-gene interactions in the presence of a polygenic signal: simulation study with application to educational attainment in the Generation Scotland Cohort Study. Bioinformatics. 2018 Jun 19. doi: 10.1093/bioinformatics/bty462. [Epub ahead of print] PubMed PMID: 29931044.

3: Chen B, Chen J, Du Q, Zhou D, Wang L, Xie J, Li Y, Zhang D. Genetic variants in microRNA biogenesis genes as novel indicators for secondary growth in Populus. New Phytol. 2018 Jun 19. doi: 10.1111/nph.15262. [Epub ahead of print] PubMed PMID: 29916214.

4: Yu Y, Assmann SM. Inter-relationships between the heterotrimeric Gβ subunit AGB1, the RLK FERONIA and RALF1 in salinity response. Plant Cell Environ. 2018 Jun 15. doi: 10.1111/pce.13370. [Epub ahead of print] PubMed PMID: 29907954.

5: Weinreich DM, Lan Y, Jaffe J, Heckendorn RB. The Influence of Higher-Order Epistasis on Biological Fitness Landscape Topography. J Stat Phys. 2018;172(1):208-225. doi: 10.1007/s10955-018-1975-3. Epub 2018 Feb 7. PubMed PMID: 29904213; PubMed Central PMCID: PMC5986866.

6: Du X, Liu S, Sun J, Zhang G, Jia Y, Pan Z, Xiang H, He S, Xia Q, Xiao S, Shi W, Quan Z, Liu J, Ma J, Pang B, Wang L, Sun G, Gong W, Jenkins JN, Lou X, Zhu J, Xu H. Dissection of complicate genetic architecture and breeding perspective of cottonseed traits by genome-wide association study. BMC Genomics. 2018 Jun 13;19(1):451. doi: 10.1186/s12864-018-4837-0. PubMed PMID: 29895260; PubMed Central PMCID: PMC5998501.

7: Huang HW, Chu PH, Pan CH, Wang CF, Lin CC, Lu PL, Chen YS, Shi YY, Su HJ, Chou LC, Lin YY, Lee HF, Chen BC, Huang TS, Tyan YC, Chuang CH, Yen YC, Chu PY. Evolutionary histories of coxsackievirus B5 and swine vesicular disease virus reconstructed by phylodynamic and sequence variation analyses. Sci Rep. 2018 Jun 11;8(1):8821. doi: 10.1038/s41598-018-27254-y. PubMed PMID: 29891869; PubMed Central PMCID: PMC5995886.

8: Siddiqui AJ, Molehin AJ, Zhang W, Ganapathy PK, Kim E, Rojo JU, Redman WK, Sennoune SR, Sudduth J, Freeborn J, Hunter D, Kottapalli KR, Kottapalli P, Wettashinghe R, van Dam GJ, Corstjens PLAM, Papin JF, Carey D, Torben W, Ahmad G, Siddiqui AA. Sm-p80-based vaccine trial in baboons: efficacy when mimicking natural conditions of chronic disease, praziquantel therapy, immunization, and Schistosoma mansoni re-encounter. Ann N Y Acad Sci. 2018 Jun 11. doi: 10.1111/nyas.13866. [Epub ahead of print] PubMed PMID: 29888790.

9: Pandey JP, Namboodiri AM, Armeson KE, Iwasaki M, Kasuga Y, Hamada GS, Tsugane S. IGHG, IGKC, and FCGR genes and endogenous antibody responses to GARP in patients with breast cancer and matched controls. Hum Immunol. 2018 Jun 4. pii: S0198-8859(18)30167-8. doi: 10.1016/j.humimm.2018.06.001. [Epub ahead of print] PubMed PMID: 29879453.

10: Gao M, Wang X, Yang Y, Tabashnik BE, Wu Y. Epistasis confers resistance to Bt toxin Cry1Ac in the cotton bollworm. Evol Appl. 2018 Feb 10;11(5):809-819. doi: 10.1111/eva.12598. eCollection 2018 Jun. PubMed PMID: 29875821; PubMed Central PMCID: PMC5979638.

11: Sieriebriennikov B, Prabh N, Dardiry M, Witte H, Röseler W, Kieninger MR, Rödelsperger C, Sommer RJ. A Developmental Switch Generating Phenotypic Plasticity Is Part of a Conserved Multi-gene Locus. Cell Rep. 2018 Jun 5;23(10):2835-2843.e4. doi: 10.1016/j.celrep.2018.05.008. PubMed PMID: 29874571.

12: Safari P, Danyali SF, Rahimi M. Bayesian inference for the genetic control of water deficit tolerance in spring wheat by stochastic search variable selection. Environ Sci Pollut Res Int. 2018 Jun 2. doi: 10.1007/s11356-018-2409-0. [Epub ahead of print] PubMed PMID: 29860694.

13: Abed A, Pérez-Rodríguez P, Crossa J, Belzile F. When less can be better: How can we make genomic selection more cost-effective and accurate in barley? Theor Appl Genet. 2018 Jun 1. doi: 10.1007/s00122-018-3120-8. [Epub ahead of print] PubMed PMID: 29858950.

14: Xie T, Akbar S, Stathopoulou MG, Oster T, Masson C, Yen FT, Visvikis-Siest S. Epistatic interaction of apolipoprotein E and lipolysis-stimulated lipoprotein receptor genetic variants is associated with Alzheimer's disease. Neurobiol Aging. 2018 May 3. pii: S0197-4580(18)30147-7. doi: 10.1016/j.neurobiolaging.2018.04.013. [Epub ahead of print] PubMed PMID: 29858039.

15: Konada L, Aricthota S, Vadla R, Haldar D. Fission Yeast Sirtuin Hst4 Functions in Preserving Genomic Integrity by Regulating Replisome Component Mcl1. Sci Rep. 2018 May 31;8(1):8496. doi: 10.1038/s41598-018-26476-4. PubMed PMID: 29855479; PubMed Central PMCID: PMC5981605.

16: Domingo J, Diss G, Lehner B. Pairwise and higher-order genetic interactions during the evolution of a tRNA. Nature. 2018 Jun;558(7708):117-121. doi: 10.1038/s41586-018-0170-7. Epub 2018 May 30. PubMed PMID: 29849145.

17: Zhang X, Sun C, Zhang Z, Dai Z, Chen Y, Yuan X, Yuan Z, Tang W, Li L, Hu Z. Correction: Genetic dissection of main and epistatic effects of QTL based on augmented triple test cross design. PLoS One. 2018 May 30;13(5):e0198562. doi: 10.1371/journal.pone.0198562. eCollection 2018. PubMed PMID: 29847579; PubMed Central PMCID: PMC5976189.

18: Martínez-Cano DJ, Bor G, Moya A, Delaye L. Testing the Domino Theory of Gene Loss in Buchnera aphidicola: The Relevance of Epistatic Interactions. Life (Basel). 2018 May 29;8(2). pii: E17. doi: 10.3390/life8020017. PubMed PMID: 29843462.

19: Hvala JA, Frayer ME, Payseur BA. Signatures of hybridization and speciation in genomic patterns of ancestry. Evolution. 2018 May 28. doi: 10.1111/evo.13509. [Epub ahead of print] PubMed PMID: 29806154.

20: Turakhiya A, Meyer SR, Marincola G, Böhm S, Vanselow JT, Schlosser A, Hofmann K, Buchberger A. ZFAND1 Recruits p97 and the 26S Proteasome to Promote the Clearance of Arsenite-Induced Stress Granules. Mol Cell. 2018 Jun 7;70(5):906-919.e7. doi: 10.1016/j.molcel.2018.04.021. Epub 2018 May 24. PubMed PMID: 29804830.