Fructosylvaline
featured

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H598121

CAS#: 10003-64-2

Description: Fructosylvaline is an Amadori compound having the potential to alter cellular adhesion, inhibit cancer metastasis and induce apoptosis.


Chemical Structure

img
Fructosylvaline
CAS# 10003-64-2

Theoretical Analysis

Hodoodo Cat#: H598121
Name: Fructosylvaline
CAS#: 10003-64-2
Chemical Formula: C11H21NO7
Exact Mass: 279.13
Molecular Weight: 279.280
Elemental Analysis: C, 47.31; H, 7.58; N, 5.02; O, 40.10

Price and Availability

Size Price Availability Quantity
10mg USD 330
100mg USD 1490
Bulk inquiry

Synonym: Fructosylvaline; Fru-val;

IUPAC/Chemical Name: ((3S,4R,5R)-3,4,5,6-tetrahydroxy-2-oxohexyl)-L-valine

InChi Key: JEQHVKBNRPNQDY-UTINFBMNSA-N

InChi Code: InChI=1S/C11H21NO7/c1-5(2)8(11(18)19)12-3-6(14)9(16)10(17)7(15)4-13/h5,7-10,12-13,15-17H,3-4H2,1-2H3,(H,18,19)/t7-,8+,9-,10-/m1/s1

SMILES Code: CC(C)[C@@H](C(O)=O)NCC([C@H]([C@@H]([C@@H](CO)O)O)O)=O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.03.00

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 279.28 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Keil P, Mortensen HB, Christophersen C. Fructosylvaline. A simple model of the N-terminal residue of human haemoglobin A1c. Acta Chem Scand B. 1985;39(3):191-3. PubMed PMID: 3993309.

2: Watanabe B, Ichiyanagi A, Hirokawa K, Gomi K, Nakatsu T, Kato H, Kajiyama N. Synthesis and inhibitory activity of substrate-analog fructosyl peptide oxidase inhibitors. Bioorg Med Chem Lett. 2015 Sep 15;25(18):3910-3. doi: 10.1016/j.bmcl.2015.07.045. Epub 2015 Jul 23. PubMed PMID: 26235953.

3: Yu J, Aboshora W, Zhang S, Zhang L. Direct UV determination of Amadori compounds using ligand-exchange and sweeping capillary electrophoresis. Anal Bioanal Chem. 2016 Feb;408(6):1657-66. doi: 10.1007/s00216-015-9276-z. Epub 2016 Jan 21. PubMed PMID: 26790873.

4: Penndorf I, Li C, Schwarzenbolz U, Henle T. N-terminal glycation of proteins and peptides in foods and in vivo: evaluation of N-(2-furoylmethyl)valine in acid hydrolyzates of human hemoglobin. Ann N Y Acad Sci. 2008 Apr;1126:118-23. doi: 10.1196/annals.1433.024. PubMed PMID: 18448804.

5: Kojima K, Mikami-Sakaguchi A, Kameya M, Miyamoto Y, Ferri S, Tsugawa W, Sode K. Substrate specificity engineering of Escherichia coli derived fructosamine 6-kinase. Biotechnol Lett. 2013 Feb;35(2):253-8. doi: 10.1007/s10529-012-1062-9. Epub 2012 Oct 18. PubMed PMID: 23076362.

6: Haorah J, Zhou L, Wang X, Xu G, Mirvish SS. Determination of total N-nitroso compounds and their precursors in frankfurters, fresh meat, dried salted fish, sauces, tobacco, and tobacco smoke particulates. J Agric Food Chem. 2001 Dec;49(12):6068-78. PubMed PMID: 11743810.

7: Rigoldi F, Spero L, Dalle Vedove A, Redaelli A, Parisini E, Gautieri A. Molecular dynamics simulations provide insights into the substrate specificity of FAOX family members. Mol Biosyst. 2016 Jul 19;12(8):2622-33. doi: 10.1039/c6mb00405a. PubMed PMID: 27327839.

8: Chawla S, Pundir CS. An amperometric hemoglobin A1c biosensor based on immobilization of fructosyl amino acid oxidase onto zinc oxide nanoparticles-polypyrrole film. Anal Biochem. 2012 Nov 15;430(2):156-62. doi: 10.1016/j.ab.2012.08.002. Epub 2012 Aug 18. PubMed PMID: 22906687.

9: Chawla S, Pundir CS. An electrochemical biosensor for fructosyl valine for glycosylated hemoglobin detection based on core-shell magnetic bionanoparticles modified gold electrode. Biosens Bioelectron. 2011 Apr 15;26(8):3438-43. doi: 10.1016/j.bios.2011.01.021. Epub 2011 Jan 22. PubMed PMID: 21324667.

10: Fujiwara M, Sumitani J, Koga S, Yoshioka I, Kouzuma T, Imamura S, Kawaguchi T, Arai M. Alteration of substrate specificity of fructosyl-amino acid oxidase from Ulocladium sp. JS-103. J Biosci Bioeng. 2006 Sep;102(3):241-3. PubMed PMID: 17046541.

11: Rajkumar R, Katterle M, Warsinke A, Möhwald H, Scheller FW. Thermometric MIP sensor for fructosyl valine. Biosens Bioelectron. 2008 Feb 28;23(7):1195-9. Epub 2007 Sep 29. PubMed PMID: 17996440.

12: Chuang SW, Rick J, Chou TC. Electrochemical characterisation of a conductive polymer molecularly imprinted with an Amadori compound. Biosens Bioelectron. 2009 Jun 15;24(10):3170-3. doi: 10.1016/j.bios.2009.02.033. Epub 2009 Mar 11. PubMed PMID: 19349156.

13: Rajkumar R, Warsinke A, Möhwald H, Scheller FW, Katterle M. Development of fructosyl valine binding polymers by covalent imprinting. Biosens Bioelectron. 2007 Jun 15;22(12):3318-25. Epub 2007 Mar 7. PubMed PMID: 17419046.

14: Ogawa K, Stöllner D, Scheller F, Warsinke A, Ishimura F, Tsugawa W, Ferri S, Sode K. Development of a flow-injection analysis (FIA) enzyme sensor for fructosyl amine monitoring. Anal Bioanal Chem. 2002 Jul;373(4-5):211-4. Epub 2002 Jun 6. PubMed PMID: 12110969.

15: Fujiwara M, Sumitani J, Koga S, Yoshioka I, Kouzuma T, Imamura S, Kawaguchi T, Arai M. Alteration of substrate specificity of fructosyl-amino acid oxidase from Fusarium oxysporum. Appl Microbiol Biotechnol. 2007 Mar;74(4):813-9. Epub 2006 Dec 9. PubMed PMID: 17160532.

16: Hirokawa K, Gomi K, Bakke M, Kajiyama N. Distribution and properties of novel deglycating enzymes for fructosyl peptide in fungi. Arch Microbiol. 2003 Sep;180(3):227-31. Epub 2003 Jul 17. PubMed PMID: 12879216.

17: Miura S, Ferri S, Tsugawa W, Kim S, Sode K. Development of fructosyl amine oxidase specific to fructosyl valine by site-directed mutagenesis. Protein Eng Des Sel. 2008 Apr;21(4):233-9. doi: 10.1093/protein/gzm047. Epub 2008 Jan 31. PubMed PMID: 18239075.

18: Sode K, Ohta S, Yanai Y, Yamazaki T. Construction of a molecular imprinting catalyst using target analogue template and its application for an amperometric fructosylamine sensor. Biosens Bioelectron. 2003 Oct 15;18(12):1485-90. PubMed PMID: 12941564.

19: Ferri S, Sakaguchi A, Goto H, Tsugawa W, Sode K. Isolation and characterization of a fructosyl-amine oxidase from an Arthrobacter sp. Biotechnol Lett. 2005 Jan;27(1):27-32. PubMed PMID: 15685416.

20: Sode K, Ishimura F, Tsugawa W. Screening and characterization of fructosyl-valine-utilizing marine microorganisms. Mar Biotechnol (NY). 2001 Mar;3(2):126-32. PubMed PMID: 14961375.