Racemic Naproxen
featured

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H592598

CAS#: 23981-80-8

Description: Racemic Naproxen is a biochemical.


Chemical Structure

img
Racemic Naproxen
CAS# 23981-80-8

Theoretical Analysis

Hodoodo Cat#: H592598
Name: Racemic Naproxen
CAS#: 23981-80-8
Chemical Formula: C14H14O3
Exact Mass: 230.09
Molecular Weight: 230.263
Elemental Analysis: C, 73.03; H, 6.13; O, 20.84

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @hodoodo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: Racemic Naproxen; DL-Naproxen; DL Naproxen

IUPAC/Chemical Name: 2-(6-Methoxy-2-naphthyl)propionic acid

InChi Key: CMWTZPSULFXXJA-UHFFFAOYSA-N

InChi Code: InChI=1S/C14H14O3/c1-9(14(15)16)10-3-4-12-8-13(17-2)6-5-11(12)7-10/h3-9H,1-2H3,(H,15,16)

SMILES Code: CC(C1=CC=C2C=C(OC)C=CC2=C1)C(O)=O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.03.00

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 230.26 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Wang L, Deng J, Ji X, Liu W, Liang J, Yan X, Chen D, Xie J. Chiral separation of racemic naproxen by high-performance liquid chromatography with beta-CD/SiO2 as the chiral stationary phase. J AOAC Int. 2014 Jan-Feb;97(1):121-7. PubMed PMID: 24672868.

2: Ozyilmaz E, Sayin S. A magnetically separable biocatalyst for resolution of racemic naproxen methyl ester. Bioprocess Biosyst Eng. 2013 Nov;36(11):1803-6. doi: 10.1007/s00449-013-0941-3. Epub 2013 Mar 23. PubMed PMID: 23525833.

3: Sayin S, Akoz E, Yilmaz M. Enhanced catalysis and enantioselective resolution of racemic naproxen methyl ester by lipase encapsulated within iron oxide nanoparticles coated with calix[8]arene valeric acid complexes. Org Biomol Chem. 2014 Sep 14;12(34):6634-42. doi: 10.1039/c4ob01048e. PubMed PMID: 25012138.

4: Layh N, Stolz A, Böhme J, Effenberger F, Knackmuss HJ. Enantioselective hydrolysis of racemic naproxen nitrile and naproxen amide to S-naproxen by new bacterial isolates. J Biotechnol. 1994 Mar 31;33(2):175-82. PubMed PMID: 7764731.

5: Akoz E, Akbulut OY, Yilmaz M. Calix[n]arene carboxylic acid derivatives as regulators of enzymatic reactions: enhanced enantioselectivity in lipase-catalyzed hydrolysis of (R/S)-naproxen methyl ester. Appl Biochem Biotechnol. 2014 Jan;172(1):509-23. doi: 10.1007/s12010-013-0527-1. Epub 2013 Oct 5. PubMed PMID: 24092454.

6: Yilmaz E, Can K, Sezgin M, Yilmaz M. Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic naproxen methyl ester. Bioresour Technol. 2011 Jan;102(2):499-506. doi: 10.1016/j.biortech.2010.08.083. Epub 2010 Aug 26. PubMed PMID: 20846857.

7: Batra S, Bhushan R. Liquid chromatographic enantioseparation of (RS)-mexiletine and (RS)-fluoxetine using chiral derivatizing reagents synthesized with (S)-naproxen moiety. Biomed Chromatogr. 2014 Jun;28(6):815-25. doi: 10.1002/bmc.3144. PubMed PMID: 24861749.

8: Kuang X, Ma Y, Su H, Zhang J, Dong YB, Tang B. High-performance liquid chromatographic enantioseparation of racemic drugs based on homochiral metal-organic framework. Anal Chem. 2014 Jan 21;86(2):1277-81. doi: 10.1021/ac403674p. Epub 2014 Jan 9. PubMed PMID: 24380495.

9: Maxwell R, Chickos J. An examination of the thermodynamics of fusion, vaporization, and sublimation of ibuprofen and naproxen by correlation gas chromatography. J Pharm Sci. 2012 Feb;101(2):805-14. doi: 10.1002/jps.22803. Epub 2011 Nov 11. PubMed PMID: 22081306.

10: Liu X, Xu JH, Pan J, Zhao J. Efficient production of (S)-naproxen with (R)-substrate recycling using an overexpressed carboxylesterase BsE-NP01. Appl Biochem Biotechnol. 2010 Nov;162(6):1574-84. doi: 10.1007/s12010-010-8939-7. Epub 2010 Mar 18. PubMed PMID: 20237863.

11: Oprea TI, Sklar LA, Agola JO, Guo Y, Silberberg M, Roxby J, Vestling A, Romero E, Surviladze Z, Murray-Krezan C, Waller A, Ursu O, Hudson LG, Wandinger-Ness A. Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases. PLoS One. 2015 Nov 11;10(11):e0142182. doi: 10.1371/journal.pone.0142182. eCollection 2015. PubMed PMID: 26558612; PubMed Central PMCID: PMC4641600.

12: Effenberger F, Böhme J. Enzyme-catalysed enantioselective hydrolysis of racemic naproxen nitrile. Bioorg Med Chem. 1994 Jul;2(7):715-21. PubMed PMID: 7858980.

13: Hashim NH, Khan SJ. Enantioselective analysis of ibuprofen, ketoprofen and naproxen in wastewater and environmental water samples. J Chromatogr A. 2011 Jul 22;1218(29):4746-54. doi: 10.1016/j.chroma.2011.05.046. Epub 2011 May 20. PubMed PMID: 21645900.

14: Yilmaz E. Enantioselective enzymatic hydrolysis of racemic drugs by encapsulation in sol-gel magnetic sporopollenin. Bioprocess Biosyst Eng. 2012 May;35(4):493-502. doi: 10.1007/s00449-011-0622-z. Epub 2011 Sep 20. PubMed PMID: 21932062.

15: Chang CS, Tsai SW. Surfactant effect on enhancing (S)-naproxen prodrug production from racemic naproxen by lipase. Appl Biochem Biotechnol. 1997 Dec;68(3):135-42. PubMed PMID: 9429297.

16: Vajda P, Kamarei F, Felinger A, Guiochon G. Comparison of volume and concentration overloadings in preparative enantio-separations by supercritical fluid chromatography. J Chromatogr A. 2014 May 9;1341:57-64. doi: 10.1016/j.chroma.2014.03.034. Epub 2014 Mar 25. PubMed PMID: 24703362.

17: Xin JY, Li SB, Xu Y, Wang LL, Shen RN. [Enzymatic resolution of racemic naproxen in a low aqueous-organic biphase system]. Sheng Wu Gong Cheng Xue Bao. 2000 Jan;16(1):55-9. Chinese. PubMed PMID: 10883277.

18: Tsai SW, Lu CC, Chang CS. Surfactant enhancement of (S)-naproxen ester productivity from racemic naproxen by lipase in isooctane. Biotechnol Bioeng. 1996 Jul 20;51(2):148-56. PubMed PMID: 18624323.

19: Tsai SW, Wei HJ. Enantioselective esterification of racemic naproxen by lipases in organic solvent. Enzyme Microb Technol. 1994 Apr;16(4):328-33. PubMed PMID: 7764635.

20: Wei D, Cui Y, Yu Q. Enantioselective esterification of racemic naproxen catalyzed by immobilized lipase in a microaqueous system. Ann N Y Acad Sci. 1998 Dec 13;864:552-4. PubMed PMID: 9928137.