Bromosporine
featured

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H406459

CAS#: 1619994-69-2

Description: Bromosporine is a broad spectrum inhibitor for bromodomains and as such will be very useful in elucidating further biological roles of reader domains as well as a tool for the validation of functional assays. Proteins that contain BRDs have been implicated in the development of a large variety of diseases, including various cancers, inflammatory diseases and neurological diseases and the therapeutic potential of bromodomain inhibition has been shown in several of these diseases, such as HIV, cancer and inflammation.


Chemical Structure

img
Bromosporine
CAS# 1619994-69-2

Theoretical Analysis

Hodoodo Cat#: H406459
Name: Bromosporine
CAS#: 1619994-69-2
Chemical Formula: C17H20N6O4S
Exact Mass: 404.13
Molecular Weight: 404.444
Elemental Analysis: C, 50.48; H, 4.98; N, 20.78; O, 15.82; S, 7.93

Price and Availability

Size Price Availability Quantity
5mg USD 110 Same day
10mg USD 180 Same day
25mg USD 385 Same day
50mg USD 650 Same day
100mg USD 1150 Same day
200mg USD 2050 2 Weeks
Bulk inquiry

Synonym: Bromosporine

IUPAC/Chemical Name: ethyl (3-methyl-6-(4-methyl-3-(methylsulfonamido)phenyl)-[1,2,4]triazolo[4,3-b]pyridazin-8-yl)carbamate

InChi Key: UYBRROMMFMPJAN-UHFFFAOYSA-N

InChi Code: InChI=1S/C17H20N6O4S/c1-5-27-17(24)18-15-9-14(21-23-11(3)19-20-16(15)23)12-7-6-10(2)13(8-12)22-28(4,25)26/h6-9,22H,5H2,1-4H3,(H,18,24)

SMILES Code: O=C(OCC)NC1=CC(C2=CC=C(C)C(NS(=O)(C)=O)=C2)=NN3C1=NN=C3C

Appearance: white solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO, not in water

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:         

Biological target: Bromosporine is a broad spectrum inhibitor for bromodomains with IC50 of 0.41 μM, 0.29 μM, 0.122 μM and 0.017 μM for BRD2, BRD4, BRD9 and CECR2, respectively.
In vitro activity: After treating with 2.5 μM bromosporine for 72h, the percentage of GFP-expressing cells was measured by flow cytometry, which represented the expression of HIV-1 LTR-driven GFP. The percentage of GFP-positive cells increased to 85.6% as compared to mock treatment (Figure 1B). In addition, dose- and time-dependent effects of bromosporine on HIV-1 reactivation were also observed in C11 cells (Figure 1C and 1D) (Supplementary Figure 1). As shown in Figure 1C, the percentage of GFP-positive cells dramatically raised from 6.88% to 87.7% as the concentration of bromosporine increased from 0.1 μM to 2.5 μM. And as shown in Figure Figure1D, after C11 cells were treated with 2.5 μM bromosporine, the percentage of GFP-positive cells increased as a function of time. Reference: Oncotarget. 2017 Nov 7; 8(55): 94104–94116. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706859/
In vivo activity: Following the in vitro effect of 5-FU with bromosporine, the effect of the drugs together as well as individual exposures were studied in the mouse model administered the drugs as described in the materials section. The combinatorial approach was found to inhibit the tumor growth of the HCT116 xenograft against individual drugs (Fig. 4A). This was further confirmed by data from body weight with an absence of higher toxicity (Fig. 4B). Tumor protein analysis revealed that cleaved caspase 3 was significantly increased in combination treatment group (Fig. 4C). These findings show that the synergistic action of the drug combination of bromosporine with 5-FU in vivo. Reference: Biochem Biophys Res Commun. 2020 Jan 22;521(4):840-845. https://pubmed.ncbi.nlm.nih.gov/31708100/

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
DMSO 41.0 101.47
DMSO:PBS (pH 7.2) (1:1) 0.5 1.24
DMF 30.0 74.18
Ethanol 0.3 0.62

Preparing Stock Solutions

The following data is based on the product molecular weight 404.44 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol: 1. Cheng X, Huang Z, Long D, Jin W. BET inhibitor bromosporine enhances 5-FU effect in colorectal cancer cells. Biochem Biophys Res Commun. 2020 Jan 22;521(4):840-845. doi: 10.1016/j.bbrc.2019.11.009. Epub 2019 Nov 7. PMID: 31708100. 2. Pan H, Lu P, Shen Y, Wang Y, Jiang Z, Yang X, Zhong Y, Yang H, Khan IU, Zhou M, Li B, Zhang Z, Xu J, Lu H, Zhu H. The bromodomain and extraterminal domain inhibitor bromosporine synergistically reactivates latent HIV-1 in latently infected cells. Oncotarget. 2017 Oct 6;8(55):94104-94116. doi: 10.18632/oncotarget.21585. PMID: 29212213; PMCID: PMC5706859.
In vitro protocol: 1. Cheng X, Huang Z, Long D, Jin W. BET inhibitor bromosporine enhances 5-FU effect in colorectal cancer cells. Biochem Biophys Res Commun. 2020 Jan 22;521(4):840-845. doi: 10.1016/j.bbrc.2019.11.009. Epub 2019 Nov 7. PMID: 31708100. 2. Pan H, Lu P, Shen Y, Wang Y, Jiang Z, Yang X, Zhong Y, Yang H, Khan IU, Zhou M, Li B, Zhang Z, Xu J, Lu H, Zhu H. The bromodomain and extraterminal domain inhibitor bromosporine synergistically reactivates latent HIV-1 in latently infected cells. Oncotarget. 2017 Oct 6;8(55):94104-94116. doi: 10.18632/oncotarget.21585. PMID: 29212213; PMCID: PMC5706859.
In vivo protocol: 1. Cheng X, Huang Z, Long D, Jin W. BET inhibitor bromosporine enhances 5-FU effect in colorectal cancer cells. Biochem Biophys Res Commun. 2020 Jan 22;521(4):840-845. doi: 10.1016/j.bbrc.2019.11.009. Epub 2019 Nov 7. PMID: 31708100.

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Zdrowowicz M, Chomicz L, Miloch J, Wiczk J, Rak J, Kciuk G, Bobrowski K. Reactivity pattern of bromonucleosides induced by 2-hydroxypropyl radicals: photochemical, radiation chemical, and computational studies. J Phys Chem B. 2015 Jun 4;119(22):6545-54. doi: 10.1021/acs.jpcb.5b01904. Epub 2015 May 26. PubMed PMID: 25971814.

2: Steklov MY, Tararov VI, Romanov GA, Mikhailov SN. Facile synthesis of 8-azido-6-benzylaminopurine. Nucleosides Nucleotides Nucleic Acids. 2011 Jul-Aug;30(7-8):503-11. doi: 10.1080/15257770.2011.602655. PubMed PMID: 21888542.

3: Andrei M, Bjørnstad V, Langli G, Rømming C, Klaveness J, Taskén K, Undheim K. Stereoselective preparation of (RP)-8-hetaryladenosine-3',5'-cyclic phosphorothioic acids. Org Biomol Chem. 2007 Jul 7;5(13):2070-80. Epub 2007 May 29. PubMed PMID: 17581650.

4: Champeil E, Pradhan P, Lakshman MK. Palladium-catalyzed synthesis of nucleoside adducts from bay- and fjord-region diol epoxides. J Org Chem. 2007 Jul 6;72(14):5035-45. Epub 2007 Jun 9. PubMed PMID: 17559269; PubMed Central PMCID: PMC2548296.

5: Dai Q, Xu D, Lim K, Harvey RG. Efficient syntheses of C(8)-aryl adducts of adenine and guanine formed by reaction of radical cation metabolites of carcinogenic polycyclic aromatic hydrocarbons with DNA. J Org Chem. 2007 Jun 22;72(13):4856-63. Epub 2007 May 27. PubMed PMID: 17530898.

6: Russo M, Jimenez LB, Mulazzani QG, D'Angelantonio M, Guerra M, Miranda MA, Chatgilialoglu C. Chemical radiation studies of 8-bromo-2'-deoxyinosine and 8-bromoinosine in aqueous solutions. Chemistry. 2006 Oct 10;12(29):7684-93. PubMed PMID: 16823787.

7: Johnson F, Bonala R, Tawde D, Torres MC, Iden CR. Efficient synthesis of the benzo[a]pyrene metabolic adducts of 2'-deoxyguanosine and 2'-deoxyadenosine and their direct incorporation into DNA. Chem Res Toxicol. 2002 Dec;15(12):1489-94. PubMed PMID: 12482230.

8: Véliz EA, Beal PA. 6-bromopurine nucleosides as reagents for nucleoside analogue synthesis. J Org Chem. 2001 Dec 14;66(25):8592-8. PubMed PMID: 11735542.

9: Janeba Z, Holý A. Synthesis of 8-amino and 8-substituted amino derivatives of acyclic purine nucleoside and nucleotide analogs. Alkylation of 8-substituted purine bases. Nucleosides Nucleotides Nucleic Acids. 2001 Apr-Jul;20(4-7):1103-6. PubMed PMID: 11562965.

10: Bodepudi V, Shibutani S, Johnson F. Synthesis of 2'-deoxy-7,8-dihydro-8-oxoguanosine and 2'-deoxy-7,8-dihydro-8-oxoadenosine and their incorporation into oligomeric DNA. Chem Res Toxicol. 1992 Sep-Oct;5(5):608-17. PubMed PMID: 1445999.