Octocrylene
featured

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H112015

CAS#: 6197-30-4

Description: Octocrylene is a UV filter. It stabilizes the full-spectrum UVA blocker avobenzone to UV radiation. Octocrylene inhibits 17β-estradiol- or dihydrotestosterone-induced transactivation of estrogen receptor α (ERα) or the androgen receptor in S. cerevisiae expressing the human receptors (IC50s = 2.17 and 0.627 mM, respectively). Topical application of octocrylene (15 or 30% w/v) increases thymidine incorporation in a mouse local lymph node assay (LLNA), indicating allergenic activity. Octocrylene has been found in influent and effluent wastewater. Formulations containing octocrylene have been used in sunscreen products.


Chemical Structure

img
Octocrylene
CAS# 6197-30-4

Theoretical Analysis

Hodoodo Cat#: H112015
Name: Octocrylene
CAS#: 6197-30-4
Chemical Formula: C24H27NO2
Exact Mass: 361.20
Molecular Weight: 361.490
Elemental Analysis: C, 79.74; H, 7.53; N, 3.87; O, 8.85

Price and Availability

Size Price Availability Quantity
5g USD 250 2 Weeks
25g USD 450 2 Weeks
100g USD 750 2 Weeks
Bulk inquiry

Synonym: 2-Ethylhexyl 2-cyano-3,3-diphenylacrylate

IUPAC/Chemical Name: 2-ethylhexyl 2-cyano-3,3-diphenylacrylate

InChi Key: FMJSMJQBSVNSBF-UHFFFAOYSA-N

InChi Code: InChI=1S/C24H27NO2/c1-3-5-12-19(4-2)18-27-24(26)22(17-25)23(20-13-8-6-9-14-20)21-15-10-7-11-16-21/h6-11,13-16,19H,3-5,12,18H2,1-2H3

SMILES Code: N#C/C(C(OCC(CC)CCCC)=O)=C(C1=CC=CC=C1)/C2=CC=CC=C2

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 361.49 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Monjezi Z, Vosough M, Heydar KT, Tarlani A. Enhanced photocatalytic treatment using plasmonic Ag@Ag3PO4/Ag@AgCl nanophotocatalyst for simultaneous degradation of multiple parabens and UV- filters in various aquatic environments under visible light irradiation. Photochem Photobiol Sci. 2022 May 29. doi: 10.1007/s43630-022-00243-x. Epub ahead of print. PMID: 35644001.


2: Abughrin SE, Alshana U, Bakirdere S. Magnetic Nanoparticle-Based Dispersive Solid-Phase Microextraction of Three UV Blockers Prior to Their Determination by HPLC-DAD. Int J Environ Res Public Health. 2022 May 16;19(10):6037. doi: 10.3390/ijerph19106037. PMID: 35627574; PMCID: PMC9140875.


3: Couselo-Rodríguez C, González-Esteban PC, Diéguez Montes MP, Flórez Á. Environmental Impact of UV Filters. Actas Dermosifiliogr. 2022 May 1:S0001-7310(22)00330-1. English, Spanish. doi: 10.1016/j.ad.2022.03.010. Epub ahead of print. PMID: 35508210.


4: Yang Y, Ako-Adounvo AM, Wang J, Coelho SG, Adah SA, Matta MK, Strauss D, Michele TM, Wang J, Faustino PJ, O'Connor T, Ashraf M. In Vitro Testing of Sunscreens for Dermal Absorption: Method Comparison and Rank Order Correlation with In Vivo Absorption. AAPS PharmSciTech. 2022 Apr 22;23(5):121. doi: 10.1208/s12249-022-02275-z. PMID: 35459978.


5: Cadena-Aizaga MI, Montesdeoca-Esponda S, Pino ÁS, Sosa-Ferrera Z, Santana- Rodríguez JJ. Assessment of anthropogenic pollution by UV filters using macrophytes as bioindicators. Sci Total Environ. 2022 Aug 1;832:155012. doi: 10.1016/j.scitotenv.2022.155012. Epub 2022 Apr 2. PMID: 35381254.


6: Fagervold SK, Lebaron P. Evaluation of the degradation capacity of WWTP sludge enrichment cultures towards several organic UV filters and the isolation of octocrylene-degrading microorganisms. Sci Total Environ. 2022 Jun 20;826:154013. doi: 10.1016/j.scitotenv.2022.154013. Epub 2022 Feb 18. PMID: 35189223.


7: Zhang J, Yang Y, Ashraf M, Cruz CN, Lee S, Faustino PJ. An advanced automation platform coupled with mass spectrometry for investigating in vitro human skin permeation of UV filters and excipients in sunscreen products. Rapid Commun Mass Spectrom. 2022 Jun 15;36(11):e9273. doi: 10.1002/rcm.9273. PMID: 35178789.


8: Samaran Q, Raison-Peyron N, Clark E, Svedman C, Dahlin J, Dereure O, Bruze M, Bourrain JL. A new case of photoallergic contact dermatitis caused by benzophenones in magazine covers. Contact Dermatitis. 2022 Apr;86(4):300-307. doi: 10.1111/cod.14057. Epub 2022 Feb 13. PMID: 35089601.


9: Cadena-Aizaga MI, Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodríguez JJ. Occurrence and environmental hazard of organic UV filters in seawater and wastewater from Gran Canaria Island (Canary Islands, Spain). Environ Pollut. 2022 May 1;300:118843. doi: 10.1016/j.envpol.2022.118843. Epub 2022 Jan 17. PMID: 35051548.


10: Ruscinc N, Morocho-Jácome AL, Martinez RM, Magalhães WV, Escudeiro CC, Giarolla J, Rosado C, Velasco MVR, Baby AR. Vaccinium myrtillus L. extract associated with octocrylene, bisoctrizole, and titanium dioxide: in vitro and in vivo tests to evaluate safety and efficacy. J Cosmet Dermatol. 2022 Jan 13. doi: 10.1111/jocd.14779. Epub ahead of print. PMID: 35029052.


11: Homem V, Llompart M, Vila M, Ribeiro ARL, Garcia-Jares C, Ratola N, Celeiro M. Gone with the flow - Assessment of personal care products in Portuguese rivers. Chemosphere. 2022 Apr;293:133552. doi: 10.1016/j.chemosphere.2022.133552. Epub 2022 Jan 7. PMID: 35007608.


12: Li Y, Xing X, An D, Sun J, Tang Z. Occurrence and distribution of organic ultraviolet absorbents in sediments from small urban rivers, Tianjin, China: Implications for risk management. Ecotoxicol Environ Saf. 2021 Dec 24;230:113120. doi: 10.1016/j.ecoenv.2021.113120. Epub ahead of print. PMID: 34959016.


13: Ko H, An S, Ahn S, Park IG, Gong J, Hwang SY, Oh S, Ki MW, Jin SH, Choi WJ, Noh M. Sunscreen filter octocrylene is a potential obesogen by acting as a PPARγ partial agonist. Toxicol Lett. 2022 Feb 1;355:141-149. doi: 10.1016/j.toxlet.2021.12.001. Epub 2021 Dec 3. PMID: 34864131.


14: Duis K, Junker T, Coors A. Review of the environmental fate and effects of two UV filter substances used in cosmetic products. Sci Total Environ. 2022 Feb 20;808:151931. doi: 10.1016/j.scitotenv.2021.151931. Epub 2021 Dec 2. PMID: 34863752.


15: Roh J, Cheng H. Ultraviolet filter, fragrance and preservative allergens in New Zealand sunscreens. Australas J Dermatol. 2022 Feb;63(1):e21-e25. doi: 10.1111/ajd.13748. Epub 2021 Nov 9. PMID: 34751433.


16: Mokh S, Nassar R, Berry A, Khatib ME, Doumiati S, Taha M, Ezzeddine R, Al Iskandarani M. Chromatographic methods for the determination of a broad spectrum of UV filters in swimming pool water. Environ Sci Pollut Res Int. 2022 Mar;29(13):18605-18616. doi: 10.1007/s11356-021-16970-0. Epub 2021 Oct 25. PMID: 34697706.


17: Beiras R. Towards standard methods for the classification of aquatic toxicity for biologically active household chemicals (BAHC) present in plastics, pharmaceuticals, and cosmetic products. Environ Monit Assess. 2021 Oct 2;193(10):685. doi: 10.1007/s10661-021-09436-w. PMID: 34599667; PMCID: PMC8487416.


18: Glover CM, Liu Y, Liu J. Assessing the risk from trace organic contaminants released via greywater irrigation to the aquatic environment. Water Res. 2021 Oct 15;205:117664. doi: 10.1016/j.watres.2021.117664. Epub 2021 Sep 15. PMID: 34583205.


19: An D, Xing X, Tang Z, Li Y, Sun J. Concentrations, distribution and potential health risks of organic ultraviolet absorbents in street dust from Tianjin, a megacity in northern China. Environ Res. 2022 Mar;204(Pt B):112130. doi: 10.1016/j.envres.2021.112130. Epub 2021 Sep 25. PMID: 34571034.


20: Galanty A, Popiół J, Paczkowska-Walendowska M, Studzińska-Sroka E, Paśko P, Cielecka-Piontek J, Pękala E, Podolak I. (+)-Usnic Acid as a Promising Candidate for a Safe and Stable Topical Photoprotective Agent. Molecules. 2021 Aug 28;26(17):5224. doi: 10.3390/molecules26175224. PMID: 34500657; PMCID: PMC8433837.