DN-1289

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H122408

CAS#: N/A

Description: DN-1289 is a potent and selective dual DLK/LZK inhibitor. DN1289 demonstrated excellent in vivo plasma half-life across species and is anticipated to freely penetrate the central nervous system with no brain impairment based on in vivo rodent pharmacokinetic studies and human in vitro transporter data. Proximal target engagement and disease relevant pathway biomarkers were also favorably regulated in an in vivo model of amyotrophic lateral sclerosis.


Chemical Structure

img
DN-1289
CAS# N/A

Theoretical Analysis

Hodoodo Cat#: H122408
Name: DN-1289
CAS#: N/A
Chemical Formula: C18H19F4N7O2
Exact Mass: 441.15
Molecular Weight: 441.390
Elemental Analysis: C, 48.98; H, 4.34; F, 17.22; N, 22.21; O, 7.25

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @hodoodo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: DN-1289; DN1289; DN 1289

IUPAC/Chemical Name: 5-(2-((1S,4S)-2-oxa-5-azabicyclo[2.2.1]heptan-5-yl)-6-(3,3-difluoropyrrolidin-1-yl)pyrimidin-4-yl)-3-(difluoromethoxy)pyrazin-2-amine

InChi Key: AVWDJSXSWJBVBP-UWVGGRQHSA-N

InChi Code: InChI=1S/C18H19F4N7O2/c19-16(20)31-15-14(23)24-5-12(25-15)11-4-13(28-2-1-18(21,22)8-28)27-17(26-11)29-6-10-3-9(29)7-30-10/h4-5,9-10,16H,1-3,6-8H2,(H2,23,24)/t9-,10-/m0/s1

SMILES Code: NC1=C(OC(F)F)N=C(C2=NC(N3C[C@H]4OC[C@@H]3C4)=NC(N5CC(F)(F)CC5)=C2)C=N1

Appearance: To be determined

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 441.39 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

Craig RA 2nd, Fox BM, Hu C, Lexa KW, Osipov M, Thottumkara AP, Larhammar M, Miyamoto T, Rana A, Kane LA, Yulyaningsih E, Solanoy H, Nguyen H, Chau R, Earr T, Kajiwara Y, Fleck D, Lucas A, Haddick PCG, Takahashi RH, Tong V, Wang J, Canet MJ, Poda SB, Scearce-Levie K, Srivastava A, Sweeney ZK, Xu M, Zhang R, He J, Lei Y, Zhuo Z, de Vicente J. Discovery of Potent and Selective Dual Leucine Zipper Kinase/Leucine Zipper-Bearing Kinase Inhibitors with Neuroprotective Properties in In Vitro and In Vivo Models of Amyotrophic Lateral Sclerosis. J Med Chem. 2022 Dec 22;65(24):16290-16312. doi: 10.1021/acs.jmedchem.2c01056. Epub 2022 Dec 5. PMID: 36469401.