Hygromycin A
featured

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H122981

CAS#: 6379-56-2

Description: Hygromycin A, also known as Homomycin A and Hygromycin A, is an antibiotic originally isolated from S. hygroscopicus. It was thought that the strongest antibiotic activity of totomycin was against Staphylococcus haemolyticus, in which growth was inhibited by concentrations of 2 µg/mL. Other gram-positive and gram-negative sensitive to totomycin are inhibited by concentrations from 16 to 31 µg/mL. In 2021 it was reported that Hygromycin A is very effective against spirochetes and can be used to eliminate the spirochete that causes Lyme disease. Bait laced with hygromycin A could be used to eliminate Lyme disease in the wild.


Chemical Structure

img
Hygromycin A
CAS# 6379-56-2

Theoretical Analysis

Hodoodo Cat#: H122981
Name: Hygromycin A
CAS#: 6379-56-2
Chemical Formula: C23H29NO12
Exact Mass: 511.17
Molecular Weight: 511.480
Elemental Analysis: C, 54.01; H, 5.72; N, 2.74; O, 37.54

Price and Availability

Size Price Availability Quantity
5mg USD 350 2 Weeks
200mg USD 450 2 Weeks
10mg USD 650 2 Weeks
500mg USD 950 2 Weeks
5g USD 4950 2 Weeks
10g USD 7950 2 Weeks
Bulk inquiry

Synonym: Homomycin; Hygromycin; (-)-Hygromycin A; 1703-18B; Antibiotic WS 1627B; Hygromycin A; Totomycin

IUPAC/Chemical Name: (E)-3-(4-(((2S,3S,4S,5S)-5-acetyl-3,4-dihydroxytetrahydrofuran-2-yl)oxy)-3-hydroxyphenyl)-2-methyl-N-((3aS,4R,5R,6S,7R,7aR)-4,6,7-trihydroxyhexahydrobenzo[d][1,3]dioxol-5-yl)acrylamide

InChi Key: YQYJSBFKSSDGFO-IIHALWDASA-N

InChi Code: InChI=1S/C23H29NO12/c1-8(22(32)24-13-14(27)16(29)21-20(15(13)28)33-7-34-21)5-10-3-4-12(11(26)6-10)35-23-18(31)17(30)19(36-23)9(2)25/h3-6,13-21,23,26-31H,7H2,1-2H3,(H,24,32)/b8-5+/t13-,14+,15-,16-,17+,18+,19-,20+,21-,23-/m1/s1

SMILES Code: O[C@H]1[C@]2([C@@]([H])([C@H](O)[C@@H](O)[C@H]1NC(/C(C)=C/C3=CC(O)=C(O[C@H]4[C@H]([C@@H]([C@H](O4)C(C)=O)O)O)C=C3)=O)OCO2)[H]

Appearance: To be determined

Purity: >95% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 511.48 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Yanagawa Y, Suenaga Y, Iijima Y, Endo M, Sanada N, Katoh E, Toki S, Okino A, Mitsuhara I. Genome editing by introduction of Cas9/sgRNA into plant cells using temperature-controlled atmospheric pressure plasma. PLoS One. 2023 Feb 16;18(2):e0281767. doi: 10.1371/journal.pone.0281767. PMID: 36795787; PMCID: PMC9934431.


2: Ding X, Yuan T, Chen W, Wang X, Chu Y, Liu X, Hu Y, Hu L. Hygromycin A derivatives isolated from Streptomyces sp. PC-22 in the rhizosphere soil of Pulsatilla chinensis. J Antibiot (Tokyo). 2022 Mar;75(3):176-180. doi: 10.1038/s41429-022-00506-w. Epub 2022 Jan 21. PMID: 35064242.


3: Arnaboldi PM, Narasimhan S. Hygromycin A in the Lymelight. Cell Host Microbe. 2021 Nov 10;29(11):1599-1601. doi: 10.1016/j.chom.2021.10.007. PMID: 34762823.


4: Villanueva MT. Rediscovering hygromycin A for Lyme disease treatment. Nat Rev Drug Discov. 2021 Dec;20(12):896. doi: 10.1038/d41573-021-00180-x. PMID: 34716444.


5: Leimer N, Wu X, Imai Y, Morrissette M, Pitt N, Favre-Godal Q, Iinishi A, Jain S, Caboni M, Leus IV, Bonifay V, Niles S, Bargabos R, Ghiglieri M, Corsetti R, Krumpoch M, Fox G, Son S, Klepacki D, Polikanov YS, Freliech CA, McCarthy JE, Edmondson DG, Norris SJ, D'Onofrio A, Hu LT, Zgurskaya HI, Lewis K. A selective antibiotic for Lyme disease. Cell. 2021 Oct 14;184(21):5405-5418.e16. doi: 10.1016/j.cell.2021.09.011. Epub 2021 Oct 6. PMID: 34619078; PMCID: PMC8526400.


6: Becker I, Prasad B, Ntefidou M, Daiker V, Richter P, Lebert M. Agrobacterium tumefaciens-Mediated Nuclear Transformation of a Biotechnologically Important Microalga-Euglena gracilis. Int J Mol Sci. 2021 Jun 11;22(12):6299. doi: 10.3390/ijms22126299. PMID: 34208268; PMCID: PMC8230907.


7: Belardinelli R, Sharma H, Peske F, Rodnina MV. Perturbation of ribosomal subunit dynamics by inhibitors of tRNA translocation. RNA. 2021 Sep;27(9):981-990. doi: 10.1261/rna.078758.121. Epub 2021 Jun 11. PMID: 34117118; PMCID: PMC8370747.


8: Scindiya M, Malathi P, Kaverinathan K, Sundar AR, Viswanathan R. Knock-down of glucose transporter and sucrose non-fermenting gene in the hemibiotrophic fungus Colletotrichum falcatum causing sugarcane red rot. Mol Biol Rep. 2021 Mar;48(3):2053-2061. doi: 10.1007/s11033-021-06140-3. Epub 2021 Mar 3. PMID: 33660095.


9: Zimmermannova O, Felcmanova K, Sacka L, Colinet AS, Morsomme P, Sychrova H. K+-specific importers Trk1 and Trk2 play different roles in Ca2+ homeostasis and signalling in Saccharomyces cerevisiae cells. FEMS Yeast Res. 2021 Apr 7;21(3):foab015. doi: 10.1093/femsyr/foab015. PMID: 33640956.


10: Robinson KA, Dunn M, Hussey SP, Fritz-Laylin LK. Identification of antibiotics for use in selection of the chytrid fungi Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans. PLoS One. 2020 Oct 20;15(10):e0240480. doi: 10.1371/journal.pone.0240480. PMID: 33079945; PMCID: PMC7575076.


11: Lozano GL, Guan C, Cao Y, Borlee BR, Broderick NA, Stabb EV, Handelsman J. A Chemical Counterpunch: Chromobacterium violaceum ATCC 31532 Produces Violacein in Response to Translation-Inhibiting Antibiotics. mBio. 2020 May 19;11(3):e00948-20. doi: 10.1128/mBio.00948-20. PMID: 32430474; PMCID: PMC7240160.


12: Zhang K, Su J, Xu M, Zhou Z, Zhu X, Ma X, Hou J, Tan L, Zhu Z, Cai H, Liu F, Sun H, Gu P, Li C, Liang Y, Zhao W, Sun C, Fu Y. A common wild rice-derived BOC1 allele reduces callus browning in indica rice transformation. Nat Commun. 2020 Jan 23;11(1):443. doi: 10.1038/s41467-019-14265-0. PMID: 31974373; PMCID: PMC6978460.


13: Palanisamy N, Degen A, Morath A, Ballestin Ballestin J, Juraske C, Öztürk MA, Sprenger GA, Youn JW, Schamel WW, Di Ventura B. Split intein-mediated selection of cells containing two plasmids using a single antibiotic. Nat Commun. 2019 Oct 31;10(1):4967. doi: 10.1038/s41467-019-12911-1. Erratum in: Nat Commun. 2020 Jan 9;11(1):276. PMID: 31672972; PMCID: PMC6823396.


14: Jillette N, Du M, Zhu JJ, Cardoz P, Cheng AW. Split selectable markers. Nat Commun. 2019 Oct 31;10(1):4968. doi: 10.1038/s41467-019-12891-2. PMID: 31672965; PMCID: PMC6823381.


15: Lu J, Shi Y, Li W, Chen S, Wang Y, He X, Yin X. RcPAL, a key gene in lignin biosynthesis in Ricinus communis L. BMC Plant Biol. 2019 May 6;19(1):181. doi: 10.1186/s12870-019-1777-z. PMID: 31060493; PMCID: PMC6501403.


16: Ortega-Escalante JA, Kwok O, Miller SM. New Selectable Markers for Volvox carteri Transformation. Protist. 2019 Feb;170(1):52-63. doi: 10.1016/j.protis.2018.11.002. Epub 2018 Nov 15. PMID: 30576875.


17: Balabanova LA, Shkryl YN, Slepchenko LV, Yugay YA, Gorpenchenko TY, Kirichuk NN, Khudyakova YV, Bakunina IY, Podvolotskaya AB, Bulgakov VP, Seitkalieva AV, Son OM, Tekutyeva LA. Development of host strains and vector system for an efficient genetic transformation of filamentous fungi. Plasmid. 2019 Jan;101:1-9. doi: 10.1016/j.plasmid.2018.11.002. Epub 2018 Nov 19. PMID: 30465791.


18: Hawer H, Ütkür K, Arend M, Mayer K, Adrian L, Brinkmann U, Schaffrath R. Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast. PLoS One. 2018 Oct 18;13(10):e0205870. doi: 10.1371/journal.pone.0205870. PMID: 30335802; PMCID: PMC6193676.


19: Lv S, Chen X, Mou C, Dai S, Bian Y, Kang H. Agrobacterium-mediated transformation of the ascomycete mushroom Morchella importuna using polyubiquitin and glyceraldehyde-3-phosphate dehydrogenase promoter-based binary vectors. World J Microbiol Biotechnol. 2018 Sep 14;34(10):148. doi: 10.1007/s11274-018-2529-1. PMID: 30218324.


20: Cabral GB, Carneiro VTC, Gomes ACMM, Lacerda AL, Martinelli AP, Dusi DMA. Genetic transformation of Brachiaria brizantha cv. Marandu by biolistics. An Acad Bras Cienc. 2018 Apr-Jun;90(2):1789-1797. doi: 10.1590/0001-3765201820170842. PMID: 29898118.