Steviol
featured

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H329679

CAS#: 471-80-7

Description: Steviol is the aglycon derivative of steviol glycosides, which are natural sweeteners isolated from S. rebaudiana. Steviol inhibits human organic anion transporters (hOATs) in uptake assays using murine cells from the S2 segment of proximal tubules. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity.


Chemical Structure

img
Steviol
CAS# 471-80-7

Theoretical Analysis

Hodoodo Cat#: H329679
Name: Steviol
CAS#: 471-80-7
Chemical Formula: C20H30O3
Exact Mass: 318.22
Molecular Weight: 318.460
Elemental Analysis: C, 75.43; H, 9.50; O, 15.07

Price and Availability

Size Price Availability Quantity
10mg USD 375
25mg USD 715
50mg USD 1150
Bulk inquiry

Synonym: Steviol; 13-O-Glucosylsteviol; Hydroxydehydrostevic Acid; 13-hydroxy Kaurenoic Acid; NSC 226902.

IUPAC/Chemical Name: (4R,4aS,6aR,9S,11aR,11bS)-9-hydroxy-4,11b-dimethyl-8-methylenetetradecahydro-6a,9-methanocyclohepta[a]naphthalene-4-carboxylic acid

InChi Key: QFVOYBUQQBFCRH-VQSWZGCSSA-N

InChi Code: InChI=1S/C20H30O3/c1-13-11-19-9-5-14-17(2,7-4-8-18(14,3)16(21)22)15(19)6-10-20(13,23)12-19/h14-15,23H,1,4-12H2,2-3H3,(H,21,22)/t14-,15-,17+,18+,19+,20-/m0/s1

SMILES Code: C=C1[C@@]2(O)C[C@]3(C1)CC[C@]4([H])[C@](C)(C(O)=O)CCC[C@@]4(C)[C@]3([H])CC2

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target: Steviol is selective for hOAT1 and hOAT3 over hOAT2 and hOAT4 (IC50s = 11.4, 36.5, 1,000, and 285 μM, respectively).
In vitro activity: The inhibition of OAT-mediated transport by steviol could alter renal drug clearance. Steviol markedly inhibited substrate uptake in all S2hOAT cells. Steviol had low IC50 for hOAT1 (11.4 microM) and hOAT3 (36.5 microM) similar to that of probenecid, whereas IC50 for hOAT2 (1000 microM) and hOAT4 (285 microM) was much higher. Reference: Pharm Res. 2005 Jun;22(6):858-66. https://pubmed.ncbi.nlm.nih.gov/15948029/
In vivo activity: The toxicokinetics and metabolism of rebaudioside A, stevioside, and steviol were studied in rats to compare their effects. Results showed that these compounds were rapidly absorbed and eliminated, with similar patterns in plasma concentration over time. Metabolite profiles were similar, with steviol being the main component in plasma. The majority of radioactivity was excreted in feces, with minimal urinary excretion. Reference: Food Chem Toxicol. 2008 Jul;46 Suppl 7:S31-9. https://pubmed.ncbi.nlm.nih.gov/18562068/

Preparing Stock Solutions

The following data is based on the product molecular weight 318.46 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol: 1. Yuajit C, Muanprasat C, Homvisasevongsa S, Chatsudthipong V. Steviol stabilizes polycystin 1 expression and promotes lysosomal degradation of CFTR and β-catenin proteins in renal epithelial cells. Biomed Pharmacother. 2017 Oct;94:820-826. doi: 10.1016/j.biopha.2017.07.165. Epub 2017 Aug 10. PMID: 28802235. 2. Srimaroeng C, Jutabha P, Pritchard JB, Endou H, Chatsudthipong V. Interactions of stevioside and steviol with renal organic anion transporters in S2 cells and mouse renal cortical slices. Pharm Res. 2005 Jun;22(6):858-66. doi: 10.1007/s11095-005-4580-5. Epub 2005 Jun 8. PMID: 15948029. 3. Roberts A, Renwick AG. Comparative toxicokinetics and metabolism of rebaudioside A, stevioside, and steviol in rats. Food Chem Toxicol. 2008 Jul;46 Suppl 7:S31-9. doi: 10.1016/j.fct.2008.05.006. Epub 2008 May 16. PMID: 18562068.
In vitro protocol: 1. Yuajit C, Muanprasat C, Homvisasevongsa S, Chatsudthipong V. Steviol stabilizes polycystin 1 expression and promotes lysosomal degradation of CFTR and β-catenin proteins in renal epithelial cells. Biomed Pharmacother. 2017 Oct;94:820-826. doi: 10.1016/j.biopha.2017.07.165. Epub 2017 Aug 10. PMID: 28802235. 2. Srimaroeng C, Jutabha P, Pritchard JB, Endou H, Chatsudthipong V. Interactions of stevioside and steviol with renal organic anion transporters in S2 cells and mouse renal cortical slices. Pharm Res. 2005 Jun;22(6):858-66. doi: 10.1007/s11095-005-4580-5. Epub 2005 Jun 8. PMID: 15948029.
In vivo protocol: 1. Roberts A, Renwick AG. Comparative toxicokinetics and metabolism of rebaudioside A, stevioside, and steviol in rats. Food Chem Toxicol. 2008 Jul;46 Suppl 7:S31-9. doi: 10.1016/j.fct.2008.05.006. Epub 2008 May 16. PMID: 18562068.

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Wald JP, Morlock GE. Quantification of steviol glycosides in food products, Stevia leaves and formulations by planar chromatography, including proof of absence for steviol and isosteviol. J Chromatogr A. 2017 Jul 14;1506:109-119. doi: 10.1016/j.chroma.2017.05.026. Epub 2017 May 11. PubMed PMID: 28552425.

2: Cantabella D, Piqueras A, Acosta-Motos JR, Bernal-Vicente A, Hernández JA, Díaz-Vivancos P. Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. Plant Physiol Biochem. 2017 Jun;115:484-496. doi: 10.1016/j.plaphy.2017.04.023. Epub 2017 Apr 26. PubMed PMID: 28500994.

3: Philippaert K, Pironet A, Mesuere M, Sones W, Vermeiren L, Kerselaers S, Pinto S, Segal A, Antoine N, Gysemans C, Laureys J, Lemaire K, Gilon P, Cuypers E, Tytgat J, Mathieu C, Schuit F, Rorsman P, Talavera K, Voets T, Vennekens R. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nat Commun. 2017 Mar 31;8:14733. doi: 10.1038/ncomms14733. PubMed PMID: 28361903; PubMed Central PMCID: PMC5380970.

4: Di Donna L, Mazzotti F, Santoro I, Sindona G. Tandem mass spectrometry: a convenient approach in the dosage of steviol glycosides in Stevia sweetened commercial food beverages. J Mass Spectrom. 2017 May;52(5):290-295. doi: 10.1002/jms.3925. PubMed PMID: 28251728.

5: Yoneda Y, Nakashima H, Miyasaka J, Ohdoi K, Shimizu H. Impact of blue, red, and far-red light treatments on gene expression and steviol glycoside accumulation in Stevia rebaudiana. Phytochemistry. 2017 May;137:57-65. doi: 10.1016/j.phytochem.2017.02.002. Epub 2017 Feb 16. PubMed PMID: 28215607.

6: Gallo M, Vitulano M, Andolfi A, DellaGreca M, Conte E, Ciaravolo M, Naviglio D. Rapid Solid-Liquid Dynamic Extraction (RSLDE): a New Rapid and Greener Method for Extracting Two Steviol Glycosides (Stevioside and Rebaudioside A) from Stevia Leaves. Plant Foods Hum Nutr. 2017 Jun;72(2):141-148. doi: 10.1007/s11130-017-0598-1. PubMed PMID: 28108883.

7: Perera WH, Ghiviriga I, Rodenburg DL, Alves K, Bowling JJ, Avula B, Khan IA, McChesney JD. Rebaudiosides T and U, minor C-19 xylopyranosyl and arabinopyranosyl steviol glycoside derivatives from Stevia rebaudiana (Bertoni) Bertoni. Phytochemistry. 2017 Mar;135:106-114. doi: 10.1016/j.phytochem.2016.12.001. Epub 2016 Dec 12. PubMed PMID: 27979591.

8: Lin SJ, Su TC, Chu CN, Chang YC, Yang LM, Kuo YC, Huang TJ. Synthesis of C-4-Substituted Steviol Derivatives and Their Inhibitory Effects against Hepatitis B Virus. J Nat Prod. 2016 Dec 23;79(12):3057-3064. doi: 10.1021/acs.jnatprod.6b00671. Epub 2016 Dec 12. PubMed PMID: 27936691.

9: Perera WH, Avula B, Khan IA, McChesney JD. Assignment of sugar arrangement in branched steviol glycosides using electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Rapid Commun Mass Spectrom. 2017 Feb 15;31(3):315-324. doi: 10.1002/rcm.7784. PubMed PMID: 27862504.

10: Momtazi-Borojeni AA, Esmaeili SA, Abdollahi E, Sahebkar A. A Review on the pharmacology and toxicology of steviol glycosides extracted from Stevia rebaudiana. Curr Pharm Des. 2016 Oct 21. [Epub ahead of print] PubMed PMID: 27784241.

11: Nguyen TT, Kim SB, Kim NM, Kang C, Chung B, Park JS, Kim D. Production of steviol from steviol glucosides using β-glycosidase from Sulfolobus solfataricus. Enzyme Microb Technol. 2016 Nov;93-94:157-165. doi: 10.1016/j.enzmictec.2016.08.013. Epub 2016 Aug 24. PubMed PMID: 27702476.

12: Hajihashemi S, Geuns JM. Gene transcription and steviol glycoside accumulation in Stevia rebaudiana under polyethylene glycol-induced drought stress in greenhouse cultivation. FEBS Open Bio. 2016 Aug 30;6(9):937-44. doi: 10.1002/2211-5463.12099. eCollection 2016 Sep. PubMed PMID: 27642557; PubMed Central PMCID: PMC5011492.

13: Acevedo W, González-Nilo F, Agosin E. Docking and Molecular Dynamics of Steviol Glycoside-Human Bitter Receptor Interactions. J Agric Food Chem. 2016 Oct 12;64(40):7585-7596. Epub 2016 Sep 28. PubMed PMID: 27640213.

14: Aranda-González I, Moguel-Ordóñez Y, Chel-Guerrero L, Segura-Campos M, Betancur-Ancona D. Evaluation of the Antihyperglycemic Effect of Minor Steviol Glycosides in Normoglycemic and Induced-Diabetic Wistar Rats. J Med Food. 2016 Sep;19(9):844-52. doi: 10.1089/jmf.2016.0014. Epub 2016 Aug 11. PubMed PMID: 27513814.

15: Nguyen TT, Si J, Kang C, Chung B, Chung D, Kim D. Facile preparation of water soluble curcuminoids extracted from turmeric (Curcuma longa L.) powder by using steviol glucosides. Food Chem. 2017 Jan 1;214:366-73. doi: 10.1016/j.foodchem.2016.07.102. Epub 2016 Jul 15. PubMed PMID: 27507487.

16: Xu Y, Zhou D, Wang Y, Li J, Wang M, Lu J, Zhang H. CYP2C8-mediated interaction between repaglinide and steviol acyl glucuronide: In vitro investigations using rat and human matrices and in vivo pharmacokinetic evaluation in rats. Food Chem Toxicol. 2016 Aug;94:138-47. doi: 10.1016/j.fct.2016.05.024. Epub 2016 Jun 1. PubMed PMID: 27259818.

17: Chen B, Li R, Chen X, Yang S, Li S, Yang K, Chen G, Ma X. Purification and Preparation of Rebaudioside A from Steviol Glycosides Using One-Dimensional Hydrophilic Interaction Chromatography. J Chromatogr Sci. 2016 Sep;54(8):1408-14. doi: 10.1093/chromsci/bmw093. Epub 2016 Jun 1. PubMed PMID: 27252356.

18: Javed R, Usman M, Yücesan B, Zia M, Gürel E. Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiol Biochem. 2017 Jan;110:94-99. doi: 10.1016/j.plaphy.2016.05.032. Epub 2016 May 24. PubMed PMID: 27246994.

19: Roberts A, Lynch B, Rogerson R, Renwick A, Kern H, Coffee M, Cuellar-Kingston N, Eapen A, Crincoli C, Pugh G Jr, Bhusari S, Purkayastha S, Carakostas M. Chemical-specific adjustment factors (inter-species toxicokinetics) to establish the ADI for steviol glycosides. Regul Toxicol Pharmacol. 2016 Aug;79:91-102. doi: 10.1016/j.yrtph.2016.05.017. Epub 2016 May 13. PubMed PMID: 27181453.

20: Molina-Calle M, Sánchez de Medina V, Delgado de la Torre MP, Priego-Capote F, Luque de Castro MD. Development and application of a quantitative method based on LC-QqQ MS/MS for determination of steviol glycosides in Stevia leaves. Talanta. 2016 Jul 1;154:263-9. doi: 10.1016/j.talanta.2016.03.051. Epub 2016 Mar 16. PubMed PMID: 27154673.