Bifenazate
featured

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H329892

CAS#: 149877-41-8

Description: Bifenazate is a very selective acaricide that controls the spider mite, Tetranychus urticae. Bifenazate is the first example of a carbazate acaricide.


Chemical Structure

img
Bifenazate
CAS# 149877-41-8

Theoretical Analysis

Hodoodo Cat#: H329892
Name: Bifenazate
CAS#: 149877-41-8
Chemical Formula: C17H20N2O3
Exact Mass: 300.15
Molecular Weight: 300.358
Elemental Analysis: C, 67.98; H, 6.71; N, 9.33; O, 15.98

Price and Availability

Size Price Availability Quantity
25mg USD 250 2 weeks
50mg USD 450 2 weeks
100mg USD 800 2 weeks
Bulk inquiry

Synonym: Bifenazate;

IUPAC/Chemical Name: isopropyl 2-(4-methoxy-[1,1'-biphenyl]-3-yl)hydrazine-1-carboxylate

InChi Key: VHLKTXFWDRXILV-UHFFFAOYSA-N

InChi Code: InChI=1S/C17H20N2O3/c1-12(2)22-17(20)19-18-15-11-14(9-10-16(15)21-3)13-7-5-4-6-8-13/h4-12,18H,1-3H3,(H,19,20)

SMILES Code: COC(C=C1)=C(NNC(OC(C)C)=O)C=C1C2=CC=CC=C2

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 300.36 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Peng Y, Li M, Huang Y, Cheng B, Cao Z, Liao X, Xiong G, Liu F, Hu C, Lu H. Bifenazate induces developmental and immunotoxicity in zebrafish. Chemosphere. 2021 May;271:129457. doi: 10.1016/j.chemosphere.2020.129457. Epub 2021 Jan 6. PMID: 33445023.


2: Ma J, Huang Y, Peng Y, Xu Z, Wang Z, Chen X, Xie S, Jiang P, Zhong K, Lu H. Bifenazate exposure induces cardiotoxicity in zebrafish embryos. Environ Pollut. 2021 Apr 1;274:116539. doi: 10.1016/j.envpol.2021.116539. Epub 2021 Jan 23. PMID: 33549839.


3: European Food Safety Authority (EFSA); Alvarez F, Arena M, Auteri D, Borroto J, Brancato A, Carrasco Cabrera L, Castoldi AF, Chiusolo A, Colagiorgi A, Colas M, Crivellente F, De Lentdecker C, Egsmose M, Fait G, Gouliarmou V, Ferilli F, Greco L, Ippolito A, Istace F, Jarrah S, Kardassi D, Kienzler A, Leuschner R, Lava R, Linguadoca A, Lythgo C, Magrans O, Mangas I, Miron I, Molnar T, Padovani L, Parra Morte JM, Pedersen R, Reich H, Santos M, Sharp R, Szentes C, Terron A, Tiramani M, Vagenende B, Villamar-Bouza L. Updated peer review of the pesticide risk assessment of the active substance bifenazate. EFSA J. 2021 Aug 30;19(8):e06818. doi: 10.2903/j.efsa.2021.6818. PMID: 34484448; PMCID: PMC8404099.


4: Bian Y, Feng Y, Zhang A, Qi X, Pan J, Han J, Ma X, Liang L. Residue distribution and risk assessment of bifenazate and its metabolite in garlic plant. Food Chem. 2022 Jun 15;379:132013. doi: 10.1016/j.foodchem.2021.132013. Epub 2022 Jan 5. PMID: 35063852.


5: European Food Safety Authority (EFSA). Peer review of the pesticide risk assessment of the active substance bifenazate. EFSA J. 2017 Jan 31;15(1):e04693. doi: 10.2903/j.efsa.2017.4693. PMID: 32625279; PMCID: PMC7009907.


6: Wang H, Xin T, Wang J, Zou Z, Zhong L, Xia B. Sublethal effects of bifenazate on biological traits and enzymatic properties in the Panonychus citri (Acari: Tetranychidae). Sci Rep. 2021 Oct 22;11(1):20934. doi: 10.1038/s41598-021-99935-0. PMID: 34686836; PMCID: PMC8536723.


7: Satheshkumar A, Senthurpandian VK, Shanmugaselvan VA. Dissipation kinetics of bifenazate in tea under tropical conditions. Food Chem. 2014 Feb 15;145:1092-6. doi: 10.1016/j.foodchem.2013.09.042. Epub 2013 Sep 14. PMID: 24128589.


8: Hamdache S, Sleiman M, de Sainte-Claire P, Jaber F, Richard C. Unravelling the reactivity of bifenazate in water and on vegetables: Kinetics and byproducts. Sci Total Environ. 2018 Sep 15;636:107-114. doi: 10.1016/j.scitotenv.2018.04.219. Epub 2018 Apr 25. PMID: 29704707.


9: Hou H, Yu X, Dong B, Hu J. Residues and Safety Evaluation of Etoxazole, Bifenazate and Its Metabolite Bifenazate-diazene in Citrus Under Open-Field Conditions. Bull Environ Contam Toxicol. 2021 Aug;107(2):281-288. doi: 10.1007/s00128-021-03319-z. Epub 2021 Jul 15. PMID: 34264365.


10: European Food Safety Authority (EFSA); Anastassiadou M, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B, Verani A. Modification of the existing maximum residue level for bifenazate in elderberries. EFSA J. 2019 Nov 17;17(11):e05878. doi: 10.2903/j.efsa.2019.5878. PMID: 32626166; PMCID: PMC7008861.


11: Hou Q, Zhang H, Zhu J, Liu F. Transcriptome Analysis to Identify Responsive Genes under Sublethal Concentration of Bifenazate in the Diamondback Moth, Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae). Int J Mol Sci. 2022 Oct 29;23(21):13173. doi: 10.3390/ijms232113173. PMID: 36361960; PMCID: PMC9656211.


12: Zhao P, Chai Y, Liu R, Yuan L. Dissipation, Residue, and Dietary Risk Assessment of Bifenthrin, Bifenazate, and Its Metabolite Bifenazate-Diazene in Apples Based on Deterministic and Probabilistic Methods. J Agric Food Chem. 2021 Dec 1;69(47):14302-14310. doi: 10.1021/acs.jafc.1c05847. Epub 2021 Nov 22. PMID: 34806379.


13: European Food Safety Authority (EFSA); Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Janossy J, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A, Villamar-Bouza L. Modification of the existing maximum residue level for bifenazate in soya bean. EFSA J. 2017 Sep 20;15(9):e04983. doi: 10.2903/j.efsa.2017.4983. PMID: 32625647; PMCID: PMC7009965.


14: Ochiai N, Mizuno M, Mimori N, Miyake T, Dekeyser M, Canlas LJ, Takeda M. Toxicity of bifenazate and its principal active metabolite, diazene, to Tetranychus urticae and Panonychus citri and their relative toxicity to the predaceous mites, Phytoseiulus persimilis and Neoseiulus californicus. Exp Appl Acarol. 2007;43(3):181-97. doi: 10.1007/s10493-007-9115-9. Epub 2007 Oct 31. PMID: 17972019.


15: Liu R, Nyoike TW, Liburd OE. Evaluation of site-specific tactics using bifenazate and Neoseiulus californicus for management of Tetranychus urticae (Acari: Tetranychidae) in strawberries. Exp Appl Acarol. 2016 Oct;70(2):189-204. doi: 10.1007/s10493-016-0073-y. Epub 2016 Aug 8. PMID: 27502111.


16: Fotoukkiaii SM, Tan Z, Xue W, Wybouw N, Van Leeuwen T. Identification and characterization of new mutations in mitochondrial cytochrome b that confer resistance to bifenazate and acequinocyl in the spider mite Tetranychus urticae. Pest Manag Sci. 2020 Mar;76(3):1154-1163. doi: 10.1002/ps.5628. Epub 2019 Nov 13. PMID: 31599486.


17: Hiragaki S, Kobayashi T, Ochiai N, Toshima K, Dekeyser MA, Matsuda K, Takeda M. A novel action of highly specific acaricide; bifenazate as a synergist for a GABA-gated chloride channel of Tetranychus urticae [Acari: Tetranychidae]. Neurotoxicology. 2012 Jun;33(3):307-13. doi: 10.1016/j.neuro.2012.01.016. Epub 2012 Feb 6. PMID: 22330756.


18: Xue W, Wybouw N, Van Leeuwen T. The G126S substitution in mitochondrially encoded cytochrome b does not confer bifenazate resistance in the spider mite Tetranychus urticae. Exp Appl Acarol. 2021 Dec;85(2-4):161-172. doi: 10.1007/s10493-021-00668-6. Epub 2021 Oct 25. PMID: 34693496.


19: Bilbo TR, Walgenbach JF. Compatibility of Bifenazate and Phytoseiulus persimilis for Management of Twospotted Spider Mites in North Carolina Staked Tomatoes. J Econ Entomol. 2020 Oct 16;113(5):2096-2103. doi: 10.1093/jee/toaa159. Erratum in: J Econ Entomol. 2020 Dec 9;113(6):3035. PMID: 32740663.


20: Liu S, Kou H, Mu B, Wang J, Zhang Z. Dietary risk evaluation of tetraconazole and bifenazate residues in fresh strawberry from protected field in North China. Regul Toxicol Pharmacol. 2019 Aug;106:1-6. doi: 10.1016/j.yrtph.2019.04.008. Epub 2019 Apr 19. PMID: 31009652.