Xylobiose

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H341490

CAS#: 6860-47-5

Description: Xylobiose is a biochemical.


Chemical Structure

img
Xylobiose
CAS# 6860-47-5

Theoretical Analysis

Hodoodo Cat#: H341490
Name: Xylobiose
CAS#: 6860-47-5
Chemical Formula: C10H18O9
Exact Mass: 282.10
Molecular Weight: 282.245
Elemental Analysis: C, 42.56; H, 6.43; O, 51.02

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @hodoodo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: Xylobiose;

IUPAC/Chemical Name: D-Xylose, 4-O-beta-D-xylopyranosyl-

InChi Key: SQNRKWHRVIAKLP-RSZZQXBVSA-N

InChi Code: InChI=1S/C10H18O9/c11-1-4(13)7(15)6(2-12)19-10-9(17)8(16)5(14)3-18-10/h1,4-10,12-17H,2-3H2/t4-,5+,6+,7+,8-,9+,10-/m0/s1

SMILES Code: O=C[C@@H]([C@H]([C@@H](CO)O[C@H]1[C@@H]([C@H]([C@@H](CO1)O)O)O)O)O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 282.25 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Lim SM, Kim E, Shin JH, Seok PR, Jung S, Yoo SH, Kim Y. Xylobiose Prevents High-Fat Diet Induced Mice Obesity by Suppressing Mesenteric Fat Deposition and Metabolic Dysregulation. Molecules. 2018 Mar 20;23(3). pii: E705. doi: 10.3390/molecules23030705. PubMed PMID: 29558403.

2: Phuengmaung P, Fujiwara D, Sukhumsirichart W, Sakamoto T. Identification and characterization of the first β-1,3-d-xylosidase from a gram-positive bacterium, Streptomyces sp. SWU10. Enzyme Microb Technol. 2018 May;112:72-78. doi: 10.1016/j.enzmictec.2017.11.002. Epub 2017 Nov 10. PubMed PMID: 29499784.

3: Singh RD, Banerjee J, Sasmal S, Muir J, Arora A. High xylan recovery using two stage alkali pre-treatment process from high lignin biomass and its valorisation to xylooligosaccharides of low degree of polymerisation. Bioresour Technol. 2018 May;256:110-117. doi: 10.1016/j.biortech.2018.02.009. Epub 2018 Feb 6. PubMed PMID: 29433045.

4: Wang X, Liu W, Xie X, Yao B, Luo H. [A highly active GH11 xylanase from Penicillium sp. L1 with potential applications in xylo-oligosaccharide production]. Sheng Wu Gong Cheng Xue Bao. 2018 Jan 25;34(1):68-77. doi: 10.13345/j.cjb.170157. Chinese. PubMed PMID: 29380572.

5: Evangelista DE, Kadowaki MAS, Mello BL, Polikarpov I. Biochemical and biophysical characterization of novel GH10 xylanase prospected from a sugar cane bagasse compost-derived microbial consortia. Int J Biol Macromol. 2018 Apr 1;109:560-568. doi: 10.1016/j.ijbiomac.2017.12.099. Epub 2017 Dec 20. PubMed PMID: 29274424.

6: Cürten C, Anders N, Juchem N, Ihling N, Volkenborn K, Knapp A, Jaeger KE, Büchs J, Spiess AC. Fast automated online xylanase activity assay using HPAEC-PAD. Anal Bioanal Chem. 2018 Jan;410(1):57-69. doi: 10.1007/s00216-017-0712-0. Epub 2017 Nov 28. PubMed PMID: 29184998.

7: Shahid S, Tajwar R, Akhtar MW. A novel trifunctional, family GH10 enzyme from Acidothermus cellulolyticus 11B, exhibiting endo-xylanase, arabinofuranosidase and acetyl xylan esterase activities. Extremophiles. 2018 Jan;22(1):109-119. doi: 10.1007/s00792-017-0981-8. Epub 2017 Nov 23. PubMed PMID: 29170828.

8: Pisa JH, Manfredi AP, Perotti NI, Romero HG, Breccia JD, Martínez MA. Agrowastes as Feedstock for the Production of Endo-β-Xylanase from Cohnella sp. Strain AR92. J Mol Microbiol Biotechnol. 2017;27(5):277-288. doi: 10.1159/000480541. Epub 2017 Nov 23. PubMed PMID: 29166641.

9: Wang X, Ma R, Xie X, Liu W, Tu T, Zheng F, You S, Ge J, Xie H, Yao B, Luo H. Thermostability improvement of a Talaromyces leycettanus xylanase by rational protein engineering. Sci Rep. 2017 Nov 10;7(1):15287. doi: 10.1038/s41598-017-12659-y. PubMed PMID: 29127292; PubMed Central PMCID: PMC5681632.

10: Alvarez-Zúñiga MT, Santiago-Hernández A, Rodríguez-Mendoza J, Campos JE, Pavón-Orozco P, Trejo-Estrada S, Hidalgo-Lara ME. Taxonomic identification of the thermotolerant and fast-growing fungus Lichtheimia ramosa H71D and biochemical characterization of the thermophilic xylanase LrXynA. AMB Express. 2017 Nov 2;7(1):194. doi: 10.1186/s13568-017-0494-y. PubMed PMID: 29098440; PubMed Central PMCID: PMC5668220.

11: Lee CG, Choi JH, Park C, Wang NL, Mun S. Standing wave design and optimization of a simulated moving bed chromatography for separation of xylobiose and xylose under the constraints on product concentration and pressure drop. J Chromatogr A. 2017 Dec 8;1527:80-90. doi: 10.1016/j.chroma.2017.10.067. Epub 2017 Oct 28. PubMed PMID: 29096923.

12: Li Q, Sun B, Li X, Xiong K, Xu Y, Yang R, Hou J, Teng C. Improvement of the catalytic characteristics of a salt-tolerant GH10 xylanase from Streptomyce rochei L10904. Int J Biol Macromol. 2018 Feb;107(Pt B):1447-1455. doi: 10.1016/j.ijbiomac.2017.10.013. Epub 2017 Oct 10. PubMed PMID: 29030195.

13: Zhang C, Acosta-Sampson L, Yu VY, Cate JHD. Screening of transporters to improve xylodextrin utilization in the yeast Saccharomyces cerevisiae. PLoS One. 2017 Sep 8;12(9):e0184730. doi: 10.1371/journal.pone.0184730. eCollection 2017. PubMed PMID: 28886200; PubMed Central PMCID: PMC5591001.

14: Khandeparker R, Parab P, Amberkar U. Recombinant Xylanase from Bacillus tequilensis BT21: Biochemical Characterisation and Its Application in the Production of Xylobiose from Agricultural Residues. Food Technol Biotechnol. 2017 Jun;55(2):164-172. doi: 10.17113/ftb.55.02.17.4896. PubMed PMID: 28867946; PubMed Central PMCID: PMC5569350.

15: Surek E, Buyukkileci AO. Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell. Carbohydr Polym. 2017 Oct 15;174:565-571. doi: 10.1016/j.carbpol.2017.06.109. Epub 2017 Jun 29. PubMed PMID: 28821105.

16: Salas-Veizaga DM, Villagomez R, Linares-Pastén JA, Carrasco C, Álvarez MT, Adlercreutz P, Nordberg Karlsson E. Extraction of Glucuronoarabinoxylan from Quinoa Stalks (Chenopodium quinoa Willd.) and Evaluation of Xylooligosaccharides Produced by GH10 and GH11 Xylanases. J Agric Food Chem. 2017 Oct 4;65(39):8663-8673. doi: 10.1021/acs.jafc.7b01737. Epub 2017 Sep 20. PubMed PMID: 28799759.

17: Liu MQ, Huo WK, Xu X, Weng XY. Recombinant Bacillus amyloliquefaciens xylanase A expressed in Pichia pastoris and generation of xylooligosaccharides from xylans and wheat bran. Int J Biol Macromol. 2017 Dec;105(Pt 1):656-663. doi: 10.1016/j.ijbiomac.2017.07.073. Epub 2017 Jul 18. PubMed PMID: 28732724.

18: Martín Pérez L, Benítez Casanova L, Moreno Pérez AJ, Pérez Gómez D, Gavaldá Martín S, Ledesma-García L, Valbuena Crespo N, Díez García B, Reyes-Sosa FM. Coupling the pretreatment and hydrolysis of lignocellulosic biomass by the expression of beta-xylosidases. Biotechnol Bioeng. 2017 Nov;114(11):2497-2506. doi: 10.1002/bit.26386. Epub 2017 Aug 17. PubMed PMID: 28710860.

19: Orita T, Sakka M, Kimura T, Sakka K. Characterization of Ruminiclostridium josui arabinoxylan arabinofuranohydrolase, RjAxh43B, and RjAxh43B-containing xylanolytic complex. Enzyme Microb Technol. 2017 Sep;104:37-43. doi: 10.1016/j.enzmictec.2017.05.008. Epub 2017 Jun 4. PubMed PMID: 28648178.

20: Seesuriyachan P, Kawee-Ai A, Chaiyaso T. Green and chemical-free process of enzymatic xylooligosaccharide production from corncob: Enhancement of the yields using a strategy of lignocellulosic destructuration by ultra-high pressure pretreatment. Bioresour Technol. 2017 Oct;241:537-544. doi: 10.1016/j.biortech.2017.05.193. Epub 2017 Jun 1. PubMed PMID: 28601771.