O-Acetyljervine

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H596212

CAS#: 14788-78-4

Description: O-Acetyljervine is a bioactive chemical.


Chemical Structure

img
O-Acetyljervine
CAS# 14788-78-4

Theoretical Analysis

Hodoodo Cat#: H596212
Name: O-Acetyljervine
CAS#: 14788-78-4
Chemical Formula: C29H41NO4
Exact Mass: 467.30
Molecular Weight: 467.650
Elemental Analysis: C, 74.48; H, 8.84; N, 3.00; O, 13.68

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @hodoodo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: O-Acetyljervine; 3-O-Acetyljervine;

IUPAC/Chemical Name: (3S,3'R,3a'S,6aS,6bS,6'S,7a'R,9R,11aS,11bR)-3',6',10,11b-tetramethyl-11-oxo-1,2,3,3a',4,4',5',6,6a,6b,6',7,7',7a',8,11,11a,11b-octadecahydro-3'H-spiro[benzo[a]fluorene-9,2'-furo[3,2-b]pyridin]-3-yl acetate

InChi Key: UQVIFHXKIPQADQ-CXKDDGKJSA-N

InChi Code: InChI=1S/C29H41NO4/c1-15-12-23-26(30-14-15)17(3)29(34-23)11-9-21-22-7-6-19-13-20(33-18(4)31)8-10-28(19,5)25(22)27(32)24(21)16(29)2/h6,15,17,20-23,25-26,30H,7-14H2,1-5H3/t15-,17+,20-,21-,22-,23+,25+,26-,28-,29-/m0/s1

SMILES Code: C[C@H]([C@]1([C@@]2([H])C[C@H](C)CN1)[H])[C@](C(C)=C34)(O2)CC[C@@]3([H])[C@]5([H])CC=C6C[C@@H](OC(C)=O)CC[C@]6(C)[C@@]5([H])C4=O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 467.65 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Schmid SM, Suchodolski JS, Price JM, Tolbert MK. Omeprazole Minimally Alters the Fecal Microbial Community in Six Cats: A Pilot Study. Front Vet Sci. 2018 Apr 16;5:79. doi: 10.3389/fvets.2018.00079. eCollection 2018. PubMed PMID: 29713638; PubMed Central PMCID: PMC5911808.

2: Md Harun-Ur-Rashid, Iwasaki H, Parveen S, Oogai S, Fukuta M, Hossain MA, Anai T, Oku H. Cytosolic Cysteine Synthase Switch Cysteine and Mimosine Production in Leucaena leucocephala. Appl Biochem Biotechnol. 2018 Apr 25. doi: 10.1007/s12010-018-2745-z. [Epub ahead of print] PubMed PMID: 29691793.

3: Stevanato P, Broccanello C, Moliterni VMC, Mandolino G, Barone V, Lucini L, Bertoldo G, Bertaggia M, Cagnin M, Pizzeghello D, Baglieri A, Squartini A, Concheri G, Nardi S. Innovative Approaches to Evaluate Sugar Beet Responses to Changes in Sulfate Availability. Front Plant Sci. 2018 Jan 31;9:14. doi: 10.3389/fpls.2018.00014. eCollection 2018. PubMed PMID: 29445382; PubMed Central PMCID: PMC5797807.

4: De Castro O, Innangi M, Menale B, Carfagna S. O-acetylserine(thio)lyase (OAS-TL) molecular expression in Pancratium maritimum L. (Amaryllidaceae) under salt stress. Planta. 2018 Mar;247(3):773-777. doi: 10.1007/s00425-018-2855-4. Epub 2018 Feb 5. PubMed PMID: 29404681.

5: Krishnan HB, Song B, Oehrle NW, Cameron JC, Jez JM. Impact of overexpression of cytosolic isoform of O-acetylserine sulfhydrylase on soybean nodulation and nodule metabolome. Sci Rep. 2018 Feb 5;8(1):2367. doi: 10.1038/s41598-018-20919-8. PubMed PMID: 29402985; PubMed Central PMCID: PMC5799319.

6: Yeon JY, Yoo SJ, Takagi H, Kang HA. A Novel Mitochondrial Serine O-Acetyltransferase, OpSAT1, Plays a Critical Role in Sulfur Metabolism in the Thermotolerant Methylotrophic Yeast Ogataea parapolymorpha. Sci Rep. 2018 Feb 5;8(1):2377. doi: 10.1038/s41598-018-20630-8. PubMed PMID: 29402922; PubMed Central PMCID: PMC5799214.

7: Fujishima K, Wang KM, Palmer JA, Abe N, Nakahigashi K, Endy D, Rothschild LJ. Reconstruction of cysteine biosynthesis using engineered cysteine-free enzymes. Sci Rep. 2018 Jan 29;8(1):1776. doi: 10.1038/s41598-018-19920-y. PubMed PMID: 29379050; PubMed Central PMCID: PMC5788988.

8: Rashid MH, Iwasaki H, Oogai S, Fukuta M, Parveen S, Hossain MA, Anai T, Oku H. Molecular characterization of cytosolic cysteine synthase in Mimosa pudica. J Plant Res. 2018 Mar;131(2):319-329. doi: 10.1007/s10265-017-0986-5. Epub 2017 Nov 27. PubMed PMID: 29181648.

9: Toh-E A, Ohkusu M, Shimizu K, Ishiwada N, Watanabe A, Kamei K. Novel biosynthetic pathway for sulfur amino acids in Cryptococcus neoformans. Curr Genet. 2018 Jun;64(3):681-696. doi: 10.1007/s00294-017-0783-7. Epub 2017 Nov 20. PubMed PMID: 29159425.

10: McKenzie MJ, Chen RKY, Leung S, Joshi S, Rippon PE, Joyce NI, McManus MT. Selenium treatment differentially affects sulfur metabolism in high and low glucosinolate producing cultivars of broccoli (Brassica oleracea L.). Plant Physiol Biochem. 2017 Dec;121:176-186. doi: 10.1016/j.plaphy.2017.10.027. Epub 2017 Oct 31. PubMed PMID: 29126060.

11: Devi S, Abdul Rehman SA, Tarique KF, Gourinath S. Structural characterization and functional analysis of cystathionine β-synthase: an enzyme involved in the reverse transsulfuration pathway of Bacillus anthracis. FEBS J. 2017 Nov;284(22):3862-3880. doi: 10.1111/febs.14273. Epub 2017 Oct 3. PubMed PMID: 28921884.

12: Mittal M, Singh AK, Kumaran S. Structural and biochemical characterization of ligand recognition by CysB, the master regulator of sulfate metabolism. Biochimie. 2017 Nov;142:112-124. doi: 10.1016/j.biochi.2017.08.011. Epub 2017 Aug 23. PubMed PMID: 28838607.

13: Prodhan MA, Jost R, Watanabe M, Hoefgen R, Lambers H, Finnegan PM. Tight control of sulfur assimilation: an adaptive mechanism for a plant from a severely phosphorus-impoverished habitat. New Phytol. 2017 Aug;215(3):1068-1079. doi: 10.1111/nph.14640. Epub 2017 Jun 28. PubMed PMID: 28656667.

14: Müller SM, Wang S, Telman W, Liebthal M, Schnitzer H, Viehhauser A, Sticht C, Delatorre C, Wirtz M, Hell R, Dietz KJ. The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response. Plant J. 2017 Sep;91(6):995-1014. doi: 10.1111/tpj.13622. Epub 2017 Aug 3. PubMed PMID: 28644561.

15: Joo YC, Hyeon JE, Han SO. Metabolic Design of Corynebacterium glutamicum for Production of l-Cysteine with Consideration of Sulfur-Supplemented Animal Feed. J Agric Food Chem. 2017 Jun 14;65(23):4698-4707. doi: 10.1021/acs.jafc.7b01061. Epub 2017 Jun 6. PubMed PMID: 28560868.

16: Anderson MT, Mitchell LA, Mobley HLT. Cysteine Biosynthesis Controls Serratia marcescens Phospholipase Activity. J Bacteriol. 2017 Jul 25;199(16). pii: e00159-17. doi: 10.1128/JB.00159-17. Print 2017 Aug 15. PubMed PMID: 28559296; PubMed Central PMCID: PMC5527384.

17: Kaushik A, Ekka MK, Kumaran S. Two Distinct Assembly States of the Cysteine Regulatory Complex of Salmonella typhimurium Are Regulated by Enzyme-Substrate Cognate Pairs. Biochemistry. 2017 May 9;56(18):2385-2399. doi: 10.1021/acs.biochem.6b01204. Epub 2017 Apr 21. PubMed PMID: 28414426.

18: Benoni R, De Bei O, Paredi G, Hayes CS, Franko N, Mozzarelli A, Bettati S, Campanini B. Modulation of Escherichia coli serine acetyltransferase catalytic activity in the cysteine synthase complex. FEBS Lett. 2017 May;591(9):1212-1224. doi: 10.1002/1873-3468.12630. Epub 2017 Apr 17. PubMed PMID: 28337759; PubMed Central PMCID: PMC5957530.

19: Dharavath S, Raj I, Gourinath S. Structure-based mutational studies of O-acetylserine sulfhydrylase reveal the reason for the loss of cysteine synthase complex formation in Brucella abortus. Biochem J. 2017 Mar 23;474(7):1221-1239. doi: 10.1042/BCJ20161062. PubMed PMID: 28126739.

20: Singh M, Kushwaha BK, Singh S, Kumar V, Singh VP, Prasad SM. Sulphur alters chromium (VI) toxicity in Solanum melongena seedlings: Role of sulphur assimilation and sulphur-containing antioxidants. Plant Physiol Biochem. 2017 Mar;112:183-192. doi: 10.1016/j.plaphy.2016.12.024. Epub 2016 Dec 27. PubMed PMID: 28088020.