1-Undecanol
featured

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H582091

CAS#: 112-42-5

Description: Undecanol, also known by its IUPAC name 1-undecanol or undecan-1-ol, and by its trivial names undecyl alcohol and hendecanol, is a fatty alcohol. Undecanol is a colorless, water-insoluble liquid of melting point 19 °C and boiling point 243 °C.


Chemical Structure

img
1-Undecanol
CAS# 112-42-5

Theoretical Analysis

Hodoodo Cat#: H582091
Name: 1-Undecanol
CAS#: 112-42-5
Chemical Formula: C11H24O
Exact Mass: 172.18
Molecular Weight: 172.310
Elemental Analysis: C, 76.68; H, 14.04; O, 9.28

Price and Availability

Size Price Availability Quantity
100g USD 240 2 Weeks
500g USD 400 2 Weeks
Bulk inquiry

Synonym: 1-Undecanol; Alcohol, undecyl; Undecyl alcohol; 1-Hendecanol; C11 alcohol; Decyl carbinol; Tip-Nip; Undecanol; Undecyl alcohol.

IUPAC/Chemical Name: undecan-1-ol

InChi Key: KJIOQYGWTQBHNH-UHFFFAOYSA-N

InChi Code: InChI=1S/C11H24O/c1-2-3-4-5-6-7-8-9-10-11-12/h12H,2-11H2,1H3

SMILES Code: CCCCCCCCCCCO

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >3 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 172.31 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Mohammed S, Behera HT, Dekebo A, Ray L. Optimization of the culture conditions for production of Polyhydroxyalkanoate and its characterization from a new Bacillus cereus sp. BNPI-92 strain, isolated from plastic waste dumping yard. Int J Biol Macromol. 2019 Nov 18. pii: S0141-8130(19)38104-8. doi: 10.1016/j.ijbiomac.2019.11.138. [Epub ahead of print] PubMed PMID: 31751740.

2: Shirinnejad M, Sarrafi AHM. Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Drop with Central Composite Design for the Spectrofluorometric Determination of Naproxen. J Fluoresc. 2019 Jul;29(4):1039-1047. doi: 10.1007/s10895-019-02417-w. Epub 2019 Jul 22. PubMed PMID: 31332643.

3: Xue J, Zhu X, Wu X, Shi T, Zhang D, Hua R. Self-acidity induced effervescence and manual shaking-assisted microextraction of neonicotinoid insecticides in orange juice. J Sep Sci. 2019 Sep;42(18):2993-3001. doi: 10.1002/jssc.201900473. Epub 2019 Jul 25. PubMed PMID: 31301158.

4: Wang Q, Zou L, Yang X, Liu X, Nie W, Zheng Y, Cheng Q, Wang K. Direct quantification of cancerous exosomes via surface plasmon resonance with dual gold nanoparticle-assisted signal amplification. Biosens Bioelectron. 2019 Jun 15;135:129-136. doi: 10.1016/j.bios.2019.04.013. Epub 2019 Apr 13. PubMed PMID: 31004923.

5: Hoisang W, Nacapricha D, Wilairat P, Tiyapongpattana W. Solidification of floating organic droplet microextraction for determination of seven insecticides in fruit juice, vegetables and agricultural runoff using gas chromatography with flame ionization and mass spectrometry detection. J Sep Sci. 2019 Jun;42(11):2032-2043. doi: 10.1002/jssc.201801193. Epub 2019 Apr 16. PubMed PMID: 30938053.

6: Roman-Hidalgo C, Santigosa-Murillo E, Ramos-Payán M, Petersen NJ, Kutter JP, Pedersen-Bjergaard S. On-chip electromembrane extraction of acidic drugs. Electrophoresis. 2019 Sep;40(18-19):2514-2521. doi: 10.1002/elps.201900024. Epub 2019 Apr 2. PubMed PMID: 30916800.

7: Osorio J, Aznar M, Nerín C. Identification of key odorant compounds in starch-based polymers intended for food contact materials. Food Chem. 2019 Jul 1;285:39-45. doi: 10.1016/j.foodchem.2019.01.157. Epub 2019 Jan 30. PubMed PMID: 30797362.

8: Xue J, Zhang D, Wu X, Pan D, Shi T, Hua R. Simultaneous determination of neonicotinoid insecticides and metabolites in rice by dispersive solid-liquid microextraction based on an in situ acid-base effervescent reaction and solidification of a floating organic droplet. Anal Bioanal Chem. 2019 Jan;411(2):315-327. doi: 10.1007/s00216-018-1482-z. Epub 2018 Dec 21. PubMed PMID: 30578440.

9: Sakanupongkul A, Sananmuang R, Udnan Y, Ampiah-Bonney RJ, Chaiyasith WC. Speciation of mercury in water and freshwater fish samples by a two-step solidified floating organic drop microextraction with electrothermal atomic absorption spectrometry. Food Chem. 2019 Mar 30;277:496-503. doi: 10.1016/j.foodchem.2018.10.131. Epub 2018 Oct 29. PubMed PMID: 30502176.

10: Rajendran BK, Xavier Suresh M, Bhaskaran SP, Harshitha Y, Gaur U, Kwok HF. Pharmacoinformatic Approach to Explore the Antidote Potential of Phytochemicals on Bungarotoxin from Indian Krait, Bungarus caeruleus. Comput Struct Biotechnol J. 2018 Oct 31;16:450-461. doi: 10.1016/j.csbj.2018.10.005. eCollection 2018. PubMed PMID: 30455855; PubMed Central PMCID: PMC6231056.

11: Na M, Liu MT, Nguyen MQ, Ryan K. Single-Neuron Comparison of the Olfactory Receptor Response to Deuterated and Nondeuterated Odorants. ACS Chem Neurosci. 2019 Jan 16;10(1):552-562. doi: 10.1021/acschemneuro.8b00416. Epub 2018 Oct 20. PubMed PMID: 30343564.

12: Iqbal M, Ezzeldin E, Khalil NY, Alam P, Al-Rashood KA. UPLC-MS/MS determination of suvorexant in urine by a simplified dispersive liquid-liquid micro-extraction followed by ultrasound assisted back extraction from solidified floating organic droplets. J Pharm Biomed Anal. 2019 Feb 5;164:1-8. doi: 10.1016/j.jpba.2018.10.005. Epub 2018 Oct 4. PubMed PMID: 30339947.

13: Habibollahi MH, Karimyan K, Arfaeinia H, Mirzaei N, Safari Y, Akramipour R, Sharafi H, Fattahi N. Extraction and determination of heavy metals in soil and vegetables irrigated with treated municipal wastewater using new mode of dispersive liquid-liquid microextraction based on the solidified deep eutectic solvent followed by GFAAS. J Sci Food Agric. 2019 Jan 30;99(2):656-665. doi: 10.1002/jsfa.9230. Epub 2018 Aug 21. PubMed PMID: 29961987.

14: Asati A, Satyanarayana GNV, Srivastava VT, Patel DK. Determination of organochlorine compounds in fish liver by ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of organic droplet coupled with gas chromatography-electron capture detection. J Chromatogr A. 2018 Aug 3;1561:20-27. doi: 10.1016/j.chroma.2018.05.035. Epub 2018 May 17. PubMed PMID: 29789169.

15: Akramipour R, Golpayegani MR, Gheini S, Fattahi N. Speciation of organic/inorganic mercury and total mercury in blood samples using vortex assisted dispersive liquid-liquid microextraction based on the freezing of deep eutectic solvent followed by GFAAS. Talanta. 2018 Aug 15;186:17-23. doi: 10.1016/j.talanta.2018.04.042. Epub 2018 Apr 12. PubMed PMID: 29784346.

16: Liu X, Liu C, Wang P, Yao G, Liu D, Zhou Z. Effervescence assisted dispersive liquid-liquid microextraction based on cohesive floating organic drop for the determination of herbicides and fungicides in water and grape juice. Food Chem. 2018 Apr 15;245:653-658. doi: 10.1016/j.foodchem.2017.08.100. Epub 2017 Sep 1. PubMed PMID: 29287422.

17: Wang G, Wang C, Yang R, Liu W, Sun S. A Sensitive and Stable Surface Plasmon Resonance Sensor Based on Monolayer Protected Silver Film. Sensors (Basel). 2017 Nov 30;17(12). pii: E2777. doi: 10.3390/s17122777. PubMed PMID: 29189753; PubMed Central PMCID: PMC5751622.

18: Arghavani-Beydokhti S, Rajabi M, Asghari A. Coupling of two centrifugeless ultrasound-assisted dispersive solid/liquid phase microextractions as a highly selective, clean, and efficient method for determination of ultra-trace amounts of non-steroidal anti-inflammatory drugs in complicated matrices. Anal Chim Acta. 2018 Jan 2;997:67-79. doi: 10.1016/j.aca.2017.10.005. Epub 2017 Oct 17. PubMed PMID: 29149996.

19: Bazregar M, Rajabi M, Yamini Y, Arghavani-Beydokhti S, Asghari A. Centrifugeless dispersive liquid-liquid microextraction based on salting-out phenomenon followed by high performance liquid chromatography for determination of Sudan dyes in different species. Food Chem. 2018 Apr 1;244:1-6. doi: 10.1016/j.foodchem.2017.10.006. Epub 2017 Oct 4. PubMed PMID: 29120756.

20: Lacour V, Moumanis K, Hassen WM, Elie-Caille C, Leblois T, Dubowski JJ. Formation Kinetics of Mixed Self-Assembled Monolayers of Alkanethiols on GaAs(100). Langmuir. 2019 Apr 2;35(13):4415-4427. doi: 10.1021/acs.langmuir.7b00929. Epub 2017 Nov 9. PubMed PMID: 29056049.