Acetyl coenzyme A

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H464067

CAS#: 72-89-9

Description: Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized for energy production.


Chemical Structure

img
Acetyl coenzyme A
CAS# 72-89-9

Theoretical Analysis

Hodoodo Cat#: H464067
Name: Acetyl coenzyme A
CAS#: 72-89-9
Chemical Formula: C23H38N7O17P3S
Exact Mass: 809.13
Molecular Weight: 809.570
Elemental Analysis: C, 34.12; H, 4.73; N, 12.11; O, 33.60; P, 11.48; S, 3.96

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @hodoodo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: Acetyl coenzyme A; Acetyl-CoA; Acetyl CoA;

IUPAC/Chemical Name: S-(2-(3-((2R)-4-(((((((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)tetrahydrofuran-2-yl)methoxy)(hydroxy)phosphoryl)oxy)(hydroxy)phosphoryl)oxy)-2-hydroxy-3,3-dimethylbutanamido)propanamido)ethyl) ethanethioate

InChi Key: ZSLZBFCDCINBPY-ZSJPKINUSA-N

InChi Code: InChI=1S/C23H38N7O17P3S/c1-12(31)51-7-6-25-14(32)4-5-26-21(35)18(34)23(2,3)9-44-50(41,42)47-49(39,40)43-8-13-17(46-48(36,37)38)16(33)22(45-13)30-11-29-15-19(24)27-10-28-20(15)30/h10-11,13,16-18,22,33-34H,4-9H2,1-3H3,(H,25,32)(H,26,35)(H,39,40)(H,41,42)(H2,24,27,28)(H2,36,37,38)/t13-,16-,17-,18+,22-/m1/s1

SMILES Code: CC(SCCNC(CCNC([C@@H](C(C)(COP(O)(OP(O)(OC[C@H]1O[C@@H](n(cn2)c3c2c(N)ncn3)[C@@H]([C@@H]1OP(O)(O)=O)O)=O)=O)C)O)=O)=O)=O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
Soluble in DMSO 0.0 100.00

Preparing Stock Solutions

The following data is based on the product molecular weight 809.57 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Liu X, Liu Y, Zhao G, Zhang Y, Liu L, Wang J, Wang Y, Zhang S, Li X, Guo D, Wang P, Xu X. Biochemical Characterization of Arylamine N-acetyltransferases From Vibrio vulnificus. Front Microbiol. 2021 Jan 18;11:595083. doi: 10.3389/fmicb.2020.595083. PMID: 33537010; PMCID: PMC7847940.

2: Scarabel L, Panozzo S, Loddo D, Mathiassen SK, Kristensen M, Kudsk P, Gitsopoulos T, Travlos I, Tani E, Chachalis D, Sattin M. Diversified Resistance Mechanisms in Multi-Resistant Lolium spp. in Three European Countries. Front Plant Sci. 2020 Dec 15;11:608845. doi: 10.3389/fpls.2020.608845. PMID: 33384707; PMCID: PMC7769757.

3: Trang NN, Chung CC, Lee TW, Cheng WL, Kao YH, Huang SY, Lee TI, Chen YJ. Empagliflozin and Liraglutide Differentially Modulate Cardiac Metabolism in Diabetic Cardiomyopathy in Rats. Int J Mol Sci. 2021 Jan 25;22(3):1177. doi: 10.3390/ijms22031177. PMID: 33503985; PMCID: PMC7865477.

4: Mosaoa R, Kasprzyk-Pawelec A, Fernandez HR, Avantaggiati ML. The Mitochondrial Citrate Carrier SLC25A1/CIC and the Fundamental Role of Citrate in Cancer, Inflammation and Beyond. Biomolecules. 2021 Jan 22;11(2):141. doi: 10.3390/biom11020141. PMID: 33499062.

5: Proietti G, Wang Y, Punzo C, Mecinović J. Substrate Scope for Human Histone Lysine Acetyltransferase KAT8. Int J Mol Sci. 2021 Jan 15;22(2):846. doi: 10.3390/ijms22020846. PMID: 33467728; PMCID: PMC7830570.

6: Reiter RJ, Sharma R, Rosales-Corral S. Anti-Warburg Effect of Melatonin: A Proposed Mechanism to Explain its Inhibition of Multiple Diseases. Int J Mol Sci. 2021 Jan 14;22(2):764. doi: 10.3390/ijms22020764. PMID: 33466614; PMCID: PMC7828708.

7: Li T, Kong L, Li X, Wu S, Attri KS, Li Y, Gong W, Zhao B, Li L, Herring LE, Asara JM, Xu L, Luo X, Lei YL, Ma Q, Seveau S, Gunn JS, Cheng X, Singh PK, Green DR, Wang H, Wen H. Listeria monocytogenes upregulates mitochondrial calcium signalling to inhibit LC3-associated phagocytosis as a survival strategy. Nat Microbiol. 2021 Jan 18. doi: 10.1038/s41564-020-00843-2. Epub ahead of print. PMID: 33462436.

8: Shirmast P, Ghafoori SM, Irwin RM, Abendroth J, Mayclin SJ, Lorimer DD, Edwards TE, Forwood JK. Structural characterization of a GNAT family acetyltransferase from Elizabethkingia anophelis bound to acetyl-CoA reveals a new dimeric interface. Sci Rep. 2021 Jan 14;11(1):1274. doi: 10.1038/s41598-020-79649-5. PMID: 33446675; PMCID: PMC7809356.

9: Wang Q, Sha C, Wang H, Ma K, Wiegle J, Abomohra AE, Shao W. A novel bifunctional aldehyde/alcohol dehydrogenase catalyzing reduction of acetyl-CoA to ethanol at temperatures up to 95 °C. Sci Rep. 2021 Jan 13;11(1):1050. doi: 10.1038/s41598-020-80159-7. PMID: 33441766; PMCID: PMC7806712.

10: Kisgeropoulos EC, Manesis AC, Shafaat HS. Ligand Field Inversion as a Mechanism to Gate Bioorganometallic Reactivity: Investigating a Biochemical Model of Acetyl CoA Synthase Using Spectroscopy and Computation. J Am Chem Soc. 2021 Jan 20;143(2):849-867. doi: 10.1021/jacs.0c10135. Epub 2021 Jan 8. PMID: 33415980.

11: Ferrarini MG, Nisimura LM, Girard RMBM, Alencar MB, Fragoso MSI, Araújo- Silva CA, Veiga AA, Abud APR, Nardelli SC, Vommaro RC, Silber AM, France-Sagot M, Ávila AR. Dichloroacetate and Pyruvate Metabolism: Pyruvate Dehydrogenase Kinases as Targets Worth Investigating for Effective Therapy of Toxoplasmosis. mSphere. 2021 Jan 6;6(1):e01002-20. doi: 10.1128/mSphere.01002-20. PMID: 33408226; PMCID: PMC7845590.

12: Ali I, Li C, Li L, Kuang M, Shafiq M, Wang Y, Yang M, Wang G. Effect of acetate, β-hydroxybutyrate and their interaction on lipogenic gene expression, triglyceride contents and lipid droplet formation in dairy cow mammary epithelial cells. In Vitro Cell Dev Biol Anim. 2021 Jan;57(1):66-75. doi: 10.1007/s11626-020-00538-2. Epub 2021 Jan 5. PMID: 33403623.

13: Drummer C 4th, Saaoud F, Shao Y, Sun Y, Xu K, Lu Y, Ni D, Atar D, Jiang X, Wang H, Yang X. Trained Immunity and Reactivity of Macrophages and Endothelial Cells. Arterioscler Thromb Vasc Biol. 2020 Dec 31:ATVBAHA120315452. doi: 10.1161/ATVBAHA.120.315452. Epub ahead of print. PMID: 33380171.

14: Yan C, Zhang C, Cao X, Feng B, Li X. Intestinal Population in Host with Metabolic Syndrome during Administration of Chitosan and Its Derivatives. Molecules. 2020 Dec 11;25(24):5857. doi: 10.3390/molecules25245857. PMID: 33322383; PMCID: PMC7764266.

15: Moffett JR, Puthillathu N, Vengilote R, Jaworski DM, Namboodiri AM. Acetate Revisited: A Key Biomolecule at the Nexus of Metabolism, Epigenetics, and Oncogenesis - Part 2: Acetate and ACSS2 in Health and Disease. Front Physiol. 2020 Nov 12;11:580171. doi: 10.3389/fphys.2020.580171. PMID: 33304273; PMCID: PMC7693462.

16: Chen Y, Zhou Y, Yin H. Recent advances in biosensor for histone acetyltransferase detection. Biosens Bioelectron. 2021 Mar 1;175:112880. doi: 10.1016/j.bios.2020.112880. Epub 2020 Dec 5. PMID: 33303321.

17: Jeong CS, Hwang J, Do H, Cha SS, Oh TJ, Kim HJ, Park HH, Lee JH. Structural and biochemical analyses of an aminoglycoside 2'-N-acetyltransferase from Mycolicibacterium smegmatis. Sci Rep. 2020 Dec 9;10(1):21503. doi: 10.1038/s41598-020-78699-z. PMID: 33299080; PMCID: PMC7725843.

18: Huang W, Hu W, Cai L, Zeng G, Fang W, Dai X, Ye Q, Chen X, Zhang J. Acetate supplementation produces antidepressant-like effect via enhanced histone acetylation. J Affect Disord. 2021 Feb 15;281:51-60. doi: 10.1016/j.jad.2020.11.121. Epub 2020 Nov 30. PMID: 33290927.

19: Moffett JR, Puthillathu N, Vengilote R, Jaworski DM, Namboodiri AM. Acetate Revisited: A Key Biomolecule at the Nexus of Metabolism, Epigenetics and Oncogenesis-Part 1: Acetyl-CoA, Acetogenesis and Acyl-CoA Short-Chain Synthetases. Front Physiol. 2020 Nov 12;11:580167. doi: 10.3389/fphys.2020.580167. PMID: 33281616; PMCID: PMC7689297.

20: Numa K, Ueno M, Fujita T, Ueda K, Hiramoto N, Mukai A, Tokuda Y, Nakano M, Sotozono C, Kinoshita S, Hamuro J. Mitochondria as a Platform for Dictating the Cell Fate of Cultured Human Corneal Endothelial Cells. Invest Ophthalmol Vis Sci. 2020 Dec 1;61(14):10. doi: 10.1167/iovs.61.14.10. PMID: 33275651; PMCID: PMC7718813.