WS-898

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H465653

CAS#: unknown

Description: WS-898 is a highly effective ABCB1 inhibitor capable of reversing paclitaxel (PTX) resistance in drug-resistant SW620/Ad300, KB-C2, and HEK293/ABCB1 cells (IC50 = 5.0, 3.67, and 3.68 nM, respectively), more potent than verapamil and zosuquidar. WS-898 inhibited the efflux function of ABCB1, thus leading to decreased efflux and increased intracellular PTX concentration in SW620/Ad300 cells. The cellular thermal shift assay indicated direct engagement of WS-898 to ABCB1. Furthermore, WS-898 stimulated the ATPase activity of ABCB1 but had minimal effects on cytochrome P450 3A4 (CYP3A4). Importantly, WS-898 increased PTX sensitization in vivo without obvious toxicity.


Chemical Structure

img
WS-898
CAS# unknown

Theoretical Analysis

Hodoodo Cat#: H465653
Name: WS-898
CAS#: unknown
Chemical Formula: C33H25N7OS
Exact Mass: 567.18
Molecular Weight: 567.671
Elemental Analysis: C, 69.82; H, 4.44; N, 17.27; O, 2.82; S, 5.65

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @hodoodo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: WS-898; WS898; WS 898;

IUPAC/Chemical Name: (E)-1-(4-((2-(((1H-benzo[d]imidazol-2-yl)methyl)thio)-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)amino)phenyl)-3-(naphthalen-2-yl)prop-2-en-1-one

InChi Key: WGQWRCAZEPAXRA-GZTJUZNOSA-N

InChi Code: InChI=1S/C33H25N7OS/c1-21-18-31(40-32(34-21)38-33(39-40)42-20-30-36-27-8-4-5-9-28(27)37-30)35-26-15-13-24(14-16-26)29(41)17-11-22-10-12-23-6-2-3-7-25(23)19-22/h2-19,35H,20H2,1H3,(H,36,37)/b17-11+

SMILES Code: O=C(/C=C/C1=CC=C(C=CC=C2)C2=C1)C3=CC=C(NC4=CC(C)=NC5=NC(SCC6=NC7=C(C=CC=C7)N6)=NN54)C=C3

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 567.67 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Wang S, Wang SQ, Teng QX, Lei ZN, Chen ZS, Chen XB, Liu HM, Yu B. Discovery of the Triazolo[1,5-a]Pyrimidine-Based Derivative WS-898 as a Highly Efficacious and Orally Bioavailable ABCB1 Inhibitor Capable of Overcoming Multidrug Resistance. J Med Chem. 2021 Nov 1. doi: 10.1021/acs.jmedchem.1c01498. Epub ahead of print. PMID: 34723530.