Eriodictyol 7-O-glucoside
featured

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H112009

CAS#: 38965-51-4

Description: Eriodictyol 7-O-glucoside is a flavanone glucoside that has been found in V. coloratum and has diverse biological activities. It scavenges hydroxyl and superoxide anion radicals in cell-free assays (IC50s = 0.28 and 0.3 mM, respectively). Eriodictyol 7-O-glucoside activates nuclear factor E2-related factor 2 (Nrf2) in a reporter assay. It protects against cytotoxicity induced by cisplatin in human renal mesangial cells (HRMCs), but not A549 lung or MDA-MB-231 breast cancer cells, when used at a concentration of 80 µM. Eriodictyol 7-O-glucoside (30 mg/kg) attenuates neurological deficits and reduces infarct volume in a rat model of cerebral ischemia induced by middle cerebral artery occlusion (MCAO).


Chemical Structure

img
Eriodictyol 7-O-glucoside
CAS# 38965-51-4

Theoretical Analysis

Hodoodo Cat#: H112009
Name: Eriodictyol 7-O-glucoside
CAS#: 38965-51-4
Chemical Formula: C21H22O11
Exact Mass: 450.12
Molecular Weight: 450.400
Elemental Analysis: C, 56.00; H, 4.92; O, 39.07

Price and Availability

Size Price Availability Quantity
1mg USD 285 2 Weeks
5mg USD 750 2 Weeks
Bulk inquiry

Synonym: 7-O-β-D-Glucopyranosyl-eriodictyol; (2S)-Eriodictyol 7-O-β-D-glucopyranoside

IUPAC/Chemical Name: (S)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

InChi Key: RAFHNDRXYHOLSH-SFTVRKLSSA-N

InChi Code: InChI=1S/C21H22O11/c22-7-16-18(27)19(28)20(29)21(32-16)30-9-4-12(25)17-13(26)6-14(31-15(17)5-9)8-1-2-10(23)11(24)3-8/h1-5,14,16,18-25,27-29H,6-7H2/t14-,16+,18+,19-,20+,21+/m0/s1

SMILES Code: OC1=CC([C@@H](O2)CC(C(C2=C3)=C(O)C=C3O[C@@H]4O[C@H](CO)[C@@H](O)[C@H](O)[C@H]4O)=O)=CC=C1O

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
DMSO 4.5 10.00

Preparing Stock Solutions

The following data is based on the product molecular weight 450.40 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Zhang C, Zhang J, Xin X, Zhu S, Niu E, Wu Q, Li T, Liu D. Changes in Phytochemical Profiles and Biological Activity of Olive Leaves Treated by Two Drying Methods. Front Nutr. 2022 Apr 28;9:854680. doi: 10.3389/fnut.2022.854680. PMID: 35571891; PMCID: PMC9097227.


2: Singh C, Upadhyay R, Tiwari KN. Comparative analysis of the seasonal influence on polyphenolic content, antioxidant capacity, identification of bioactive constituents and hepatoprotective biomarkers by in silico docking analysis in Premna integrifolia L. Physiol Mol Biol Plants. 2022 Jan;28(1):223-249. doi: 10.1007/s12298-021-01120-0. Epub 2022 Jan 7. PMID: 35221581; PMCID: PMC8847619.


3: Qiao RF, Zhong MY, Zhang M, Yang L, DU XQ, Tuo FL, Yuan JB. [Dryness comparison of different fractions of Aurantii Fructus extract on normal mice and gastrointestinal motility disorder rats and spectrum-dryness study]. Zhongguo Zhong Yao Za Zhi. 2021 Oct;46(20):5291-5303. Chinese. doi: 10.19540/j.cnki.cjcmm.20210525.307. PMID: 34738432.


4: Zakharenko AM, Razgonova MP, Pikula KS, Golokhvast KS. Simultaneous Determination of 78 Compounds of Rhodiola rosea Extract by Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry. Biochem Res Int. 2021 Jul 6;2021:9957490. doi: 10.1155/2021/9957490. PMID: 34306755; PMCID: PMC8279876.


5: Fujimura Y, Fujino K, Yoshimoto T, Nezu A, Marugame Y, Bae J, Kumazoe M, Tachibana H. Eriodictyol-Amplified 67-kDa Laminin Receptor Signaling Potentiates the Antiallergic Effect of O-Methylated Catechin. J Nat Prod. 2021 Jun 25;84(6):1823-1830. doi: 10.1021/acs.jnatprod.1c00337. Epub 2021 Jun 9. PMID: 34106718.


6: Zhumakanova BS, Korona-Głowniak I, Skalicka-Woźniak K, Ludwiczuk A, Baj T, Wojtanowski KK, Józefczyk A, Zhaparkulova KA, Sakipova ZB, Malm A. Phytochemical Fingerprinting and In Vitro Antimicrobial and Antioxidant Activity of the Aerial Parts of Thymus marschallianus Willd. and Thymus seravschanicus Klokov Growing Widely in Southern Kazakhstan. Molecules. 2021 May 26;26(11):3193. doi: 10.3390/molecules26113193. PMID: 34073499; PMCID: PMC8198081.


7: Cortés-Chitala MDC, Flores-Martínez H, Orozco-Ávila I, León-Campos C, Suárez- Jacobo Á, Estarrón-Espinosa M, López-Muraira I. Identification and Quantification of Phenolic Compounds from Mexican Oregano (Lippia graveolens HBK) Hydroethanolic Extracts and Evaluation of Its Antioxidant Capacity. Molecules. 2021 Jan 29;26(3):702. doi: 10.3390/molecules26030702. PMID: 33572779; PMCID: PMC7866295.


8: Tsiokanos E, Tsafantakis N, Termentzi A, Aligiannis N, Skaltsounis LA, Fokialakis N. Phytochemical characteristics of bergamot oranges from the Ionian islands of Greece: A multi-analytical approach with emphasis in the distribution of neohesperidose flavanones. Food Chem. 2021 May 1;343:128400. doi: 10.1016/j.foodchem.2020.128400. Epub 2020 Oct 15. PMID: 33131954.


9: Zhu TT, Liu H, Wang PY, Ni R, Sun CJ, Yuan JC, Niu M, Lou HX, Cheng AX. Functional characterization of UDP-glycosyltransferases from the liverwort Plagiochasma appendiculatum and their potential for biosynthesizing flavonoid 7-O-glucosides. Plant Sci. 2020 Oct;299:110577. doi: 10.1016/j.plantsci.2020.110577. Epub 2020 Jun 23. PMID: 32900434.


10: Mubashir N, Fatima R, Naeem S. Identification of Novel Phyto-chemicals from Ocimum basilicum for the Treatment of Parkinson's Disease using In Silico Approach. Curr Comput Aided Drug Des. 2020;16(4):420-434. doi: 10.2174/1573409915666190503113617. PMID: 32883197.


11: Sonmezdag AS, Kelebek H, Selli S. Effect of hulling methods and roasting treatment on phenolic compounds and physicochemical properties of cultivars 'Ohadi' and 'Uzun' pistachios (Pistacia vera L.). Food Chem. 2019 Jan 30;272:418-426. doi: 10.1016/j.foodchem.2018.08.065. Epub 2018 Aug 17. PMID: 30309564.


12: Ho KV, Lei Z, Sumner LW, Coggeshall MV, Hsieh HY, Stewart GC, Lin CH. Identifying Antibacterial Compounds in Black Walnuts (Juglans nigra) Using a Metabolomics Approach. Metabolites. 2018 Sep 29;8(4):58. doi: 10.3390/metabo8040058. PMID: 30274312; PMCID: PMC6316014.


13: Vanzolini KL, da F Sprenger R, Leme GM, de S Moraes VR, Vilela AFL, Cardoso CL, Cass QB. Acetylcholinesterase affinity-based screening assay on Lippia gracilis Schauer extracts. J Pharm Biomed Anal. 2018 May 10;153:232-237. doi: 10.1016/j.jpba.2018.02.035. Epub 2018 Feb 21. PMID: 29506006.


14: Olennikov DN, Chirikova NK, Kashchenko NI, Gornostai TG, Selyutina IY, Zilfikarov IN. Effect of Low Temperature Cultivation on the Phytochemical Profile and Bioactivity of Arctic Plants: A Case of Dracocephalum palmatum. Int J Mol Sci. 2017 Nov 30;18(12):2579. doi: 10.3390/ijms18122579. PMID: 29189749; PMCID: PMC5751182.


15: Sonmezdag AS, Kelebek H, Selli S. Pistachio oil (Pistacia vera L. cv. Uzun): Characterization of key odorants in a representative aromatic extract by GC-MS- olfactometry and phenolic profile by LC-ESI-MS/MS. Food Chem. 2018 Feb 1;240:24-31. doi: 10.1016/j.foodchem.2017.07.086. Epub 2017 Jul 18. PMID: 28946268.


16: Dwivedi VD, Tripathi IP, Bharadwaj S, Kaushik AC, Mishra SK. Identification of new potent inhibitors of dengue virus NS3 protease from traditional Chinese medicine database. Virusdisease. 2016 Sep;27(3):220-225. doi: 10.1007/s13337-016-0328-6. Epub 2016 Jul 20. PMID: 28466032; PMCID: PMC5394702.


17: Cheung TK, Li W, Ho HM, Liang ZT, Huang CQ. [Chemical variation in Aurantii Fructus before and after processing based on UHPLC-Q-TOF-MS]. Zhongguo Zhong Yao Za Zhi. 2016 Jun;41(11):2070-2080. Chinese. doi: 10.4268/cjcmm20161116. PMID: 28901103.


18: Vieira MN, Winterhalter P, Jerz G. Flavonoids from the flowers of Impatiens glandulifera Royle isolated by high performance countercurrent chromatography. Phytochem Anal. 2016 Mar-Apr;27(2):116-25. doi: 10.1002/pca.2606. Epub 2016 Jan 11. PMID: 26751603.


19: Barreca D, Laganà G, Leuzzi U, Smeriglio A, Trombetta D, Bellocco E. Evaluation of the nutraceutical, antioxidant and cytoprotective properties of ripe pistachio (Pistacia vera L., variety Bronte) hulls. Food Chem. 2016 Apr 1;196:493-502. doi: 10.1016/j.foodchem.2015.09.077. Epub 2015 Sep 25. PMID: 26593519.


20: Fialovaa S, Veizerova L, Nosalova V, Drabikova K, Tekelova D, Grancai D, Sotnikova R. Water Extract of Mentha x villosa: Phenolic Fingerprint and Effect on Ischemia-Reperfusion Injury. Nat Prod Commun. 2015 Jun;10(6):937-40. PMID: 26197521.