Nedisertib
featured

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H206478

CAS#: 1637542-33-6

Description: Nedisertib, also known as M-3814, MSC2490484A, is an orally available inhibitor of DNA-dependent protein kinase (DNA-PK), with potential antineoplastic and chemo/radiosensitizing activities. Upon oral administration, the DNA-PK inhibitor MSC2490484A binds to and inhibits the activity of DNA-PK. This inhibits the ability of tumor cells to repair damaged DNA, which may lead to a reduction in cellular proliferation of cancer cells expressing DNA-PK.


Chemical Structure

img
Nedisertib
CAS# 1637542-33-6

Theoretical Analysis

Hodoodo Cat#: H206478
Name: Nedisertib
CAS#: 1637542-33-6
Chemical Formula: C24H21ClFN5O3
Exact Mass: 481.13
Molecular Weight: 481.910
Elemental Analysis: C, 59.82; H, 4.39; Cl, 7.36; F, 3.94; N, 14.53; O, 9.96

Price and Availability

Size Price Availability Quantity
5mg USD 150 2 Weeks
10mg USD 250 2 Weeks
Bulk inquiry

Synonym: MSC2490484A; MSC-2490484A; MSC 2490484A; M3814; M-3814; M 3814; nedisertib; peposertib,

IUPAC/Chemical Name: (S)-(2-chloro-4-fluoro-5-(7-morpholinoquinazolin-4-yl)phenyl)(6-methoxypyridazin-3-yl)methanol

InChi Key: MOWXJLUYGFNTAL-DEOSSOPVSA-N

InChi Code: InChI=1S/C24H21ClFN5O3/c1-33-22-5-4-20(29-30-22)24(32)16-11-17(19(26)12-18(16)25)23-15-3-2-14(10-21(15)27-13-28-23)31-6-8-34-9-7-31/h2-5,10-13,24,32H,6-9H2,1H3/t24-/m0/s1

SMILES Code: COC1=CC=C([C@@H](O)C2=CC(C3=C(C=CC(N4CCOCC4)=C5)C5=NC=N3)=C(F)C=C2Cl)N=N1

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO, not in water

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info: DNA-PK, a serine/threonine kinase and a member of the PI3K-related kinase subfamily of protein kinases, is activated upon DNA damage and plays a key role in repairing DNA double-strand breaks (DSBs) via the DNA nonhomologous end joining (NHEJ) pathway. The enhanced ability of tumor cells to repair DSBs plays a major role in the resistance of tumor cells to chemo- and radiotherapy.

Biological target:
In vitro activity:
In vivo activity:

Solubility Data

Solvent Max Conc. mg/mL Max Conc. mM
Solubility
DMSO 96.0 199.60

Preparing Stock Solutions

The following data is based on the product molecular weight 481.91 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Fu YW, Dai XY, Wang WT, Yang ZX, Zhao JJ, Zhang JP, Wen W, Zhang F, Oberg KC, Zhang L, Cheng T, Zhang XB. Dynamics and competition of CRISPR-Cas9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and HDR editing. Nucleic Acids Res. 2021 Jan 25;49(2):969-985. doi: 10.1093/nar/gkaa1251. PMID: 33398341; PMCID: PMC7826255.


2: van Bussel MTJ, Awada A, de Jonge MJA, Mau-Sørensen M, Nielsen D, Schöffski P, Verheul HMW, Sarholz B, Berghoff K, El Bawab S, Kuipers M, Damstrup L, Diaz- Padilla I, Schellens JHM. A first-in-man phase 1 study of the DNA-dependent protein kinase inhibitor peposertib (formerly M3814) in patients with advanced solid tumours. Br J Cancer. 2021 Feb;124(4):728-735. doi: 10.1038/s41416-020-01151-6. Epub 2020 Nov 24. PMID: 33230210; PMCID: PMC7884679.


3: Wu ZX, Peng Z, Yang Y, Wang JQ, Teng QX, Lei ZN, Fu YG, Patel K, Liu L, Lin L, Zou C, Chen ZS. M3814, a DNA-PK Inhibitor, Modulates ABCG2-Mediated Multidrug Resistance in Lung Cancer Cells. Front Oncol. 2020 May 12;10:674. doi: 10.3389/fonc.2020.00674. PMID: 32477940; PMCID: PMC7235170.


4: Zenke FT, Zimmermann A, Sirrenberg C, Dahmen H, Kirkin V, Pehl U, Grombacher T, Wilm C, Fuchss T, Amendt C, Vassilev LT, Blaukat A. Pharmacologic Inhibitor of DNA-PK, M3814, Potentiates Radiotherapy and Regresses Human Tumors in Mouse Models. Mol Cancer Ther. 2020 May;19(5):1091-1101. doi: 10.1158/1535-7163.MCT-19-0734. Epub 2020 Mar 27. PMID: 32220971.


5: Carr MI, Zimmermann A, Chiu LY, Zenke FT, Blaukat A, Vassilev LT. DNA-PK Inhibitor, M3814, as a New Combination Partner of Mylotarg in the Treatment of Acute Myeloid Leukemia. Front Oncol. 2020 Feb 13;10:127. doi: 10.3389/fonc.2020.00127. PMID: 32117773; PMCID: PMC7031257.


6: Anne Esguerra Z, Watanabe G, Okitsu CY, Hsieh CL, Lieber MR. DNA-PKcs chemical inhibition versus genetic mutation: Impact on the junctional repair steps of V(D)J recombination. Mol Immunol. 2020 Apr;120:93-100. doi: 10.1016/j.molimm.2020.01.018. Epub 2020 Feb 26. PMID: 32113132; PMCID: PMC7184946.


7: Wise HC, Iyer GV, Moore K, Temkin SM, Gordon S, Aghajanian C, Grisham RN. Activity of M3814, an Oral DNA-PK Inhibitor, In Combination with Topoisomerase II Inhibitors in Ovarian Cancer Models. Sci Rep. 2019 Dec 11;9(1):18882. doi: 10.1038/s41598-019-54796-6. PMID: 31827119; PMCID: PMC6906487.


8: Sun Q, Guo Y, Liu X, Czauderna F, Carr MI, Zenke FT, Blaukat A, Vassilev LT. Therapeutic Implications of p53 Status on Cancer Cell Fate Following Exposure to Ionizing Radiation and the DNA-PK Inhibitor M3814. Mol Cancer Res. 2019 Dec;17(12):2457-2468. doi: 10.1158/1541-7786.MCR-19-0362. Epub 2019 Sep 24. PMID: 31551253.


9: Riesenberg S, Chintalapati M, Macak D, Kanis P, Maricic T, Pääbo S. Simultaneous precise editing of multiple genes in human cells. Nucleic Acids Res. 2019 Nov 4;47(19):e116. doi: 10.1093/nar/gkz669. PMID: 31392986; PMCID: PMC6821318.


10: Klein C, Dokic I, Mairani A, Mein S, Brons S, Häring P, Haberer T, Jäkel O, Zimmermann A, Zenke F, Blaukat A, Debus J, Abdollahi A. Overcoming hypoxia- induced tumor radioresistance in non-small cell lung cancer by targeting DNA- dependent protein kinase in combination with carbon ion irradiation. Radiat Oncol. 2017 Dec 29;12(1):208. doi: 10.1186/s13014-017-0939-0. PMID: 29287602; PMCID: PMC5747947.


11: Harnor SJ, Brennan A, Cano C. Targeting DNA-Dependent Protein Kinase for Cancer Therapy. ChemMedChem. 2017 Jun 21;12(12):895-900. doi: 10.1002/cmdc.201700143. Epub 2017 May 29. PMID: 28423228.

Shy BR, Vykunta VS, Ha A, Talbot A, Roth TL, Nguyen DN, Pfeifer WG, Chen YY, Blaeschke F, Shifrut E, Vedova S, Mamedov MR, Chung JJ, Li H, Yu R, Wu D, Wolf J, Martin TG, Castro CE, Ye L, Esensten JH, Eyquem J, Marson A. High-yield genome engineering in primary cells using a hybrid ssDNA repair template and small-molecule cocktails. Nat Biotechnol. 2022 Aug 25. doi: 10.1038/s41587-022-01418-8. Epub ahead of print. PMID: 36008610.