CG0009

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: H406764

CAS#: 944744-57-4

Description: CG0009 is a potent and selective a Glycogen Synthase Kinase 3 (GSK3) inhibitor. CG0009, inhibits proliferation, induces apoptosis cell death, and activates the p53-Bax pathway in breast cancer cells, predominantly via cyclin D1 depletion. CG0009 induces significant growth inhibition and cell death in breast cancer cell lines, with a wide range of IC50 values (between 0.49 (MCF7) and 11 µM (NCI/ADR-RES and BT549)). CG0009 inhibits breast cancer cell growth through cyclin D1 depletion and p53 activation, and may thus offer an innovative therapeutic approach for breast cancers resistant to hormone-based therapy.


Chemical Structure

img
CG0009
CAS# 944744-57-4

Theoretical Analysis

Hodoodo Cat#: H406764
Name: CG0009
CAS#: 944744-57-4
Chemical Formula: C26H31N7O
Exact Mass: 457.26
Molecular Weight: 457.582
Elemental Analysis: C, 68.25; H, 6.83; N, 21.43; O, 3.50

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @hodoodo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Synonym: CG0009; CG-0009; CG 0009.

IUPAC/Chemical Name: 2-(4-((2-(diethylamino)ethyl)(methyl)amino)phenyl)-N-(4-methylpyridin-3-yl)-3H-imidazo[4,5-b]pyridine-7-carboxamide

InChi Key: PFCCDXDYVNKMHB-UHFFFAOYSA-N

InChi Code: InChI=1S/C26H31N7O/c1-5-33(6-2)16-15-32(4)20-9-7-19(8-10-20)24-30-23-21(12-14-28-25(23)31-24)26(34)29-22-17-27-13-11-18(22)3/h7-14,17H,5-6,15-16H2,1-4H3,(H,29,34)(H,28,30,31)

SMILES Code: O=C(C1=C2C(NC(C3=CC=C(N(CCN(CC)CC)C)C=C3)=N2)=NC=C1)NC4=C(C)C=CN=C4

Appearance: Solid powder

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Solubility: Soluble in DMSO, not in water

Shelf Life: >2 years if stored properly

Drug Formulation: This drug may be formulated in DMSO

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 457.58 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1. Cho, J.-M.; et. al. Imidazopyridine derivatives inhibiting protein kinase activity, method for the preparation thereof and pharmaceutical composition containing same. WO2007083978A1.
2. Kim, H. M.; et. al. CG0009, a novel glycogen synthase kinase 3 inhibitor, induces cell death through cyclin D1 depletion in breast cancer cells. PLoS One 2013, 8(4), e60383.