Vestitol

    WARNING: This product is for research use only, not for human or veterinary use.

Hodoodo CAT#: 333110

CAS#: 35878-41-2 (R-isomer)

Description: Vestitol is an isoflavonoid isolated from Brazilian red propolis with anti-inflammatory, antimicrobial, and anti-caries activity. Vestitol inhibited NO production by 83% at 0.55 μM without affecting cell viability when compared to the vehicle control (P < 0.05). Treatment with vestitol reduced GM-CSF, IL-6, TNF-α, IL-4 and TGF-β levels and increased IL-10 release (P < 0.05). Vestitol affected the expression of genes related to NF-κB pathway, NO synthase, and inhibition of leukocyte transmigration, namely: Ccs, Ccng1, Calm1, Tnfsf15, Il11, Gata3, Gadd45b, Cdkn1b, Csf1, Ccl5, Birc3 (negatively regulated), and Igf1 (positively regulated). Vestitol diminished the activation of NF-κB and Erk 1/2 pathways and induced macrophages into M2-like polarization. Vestitol is the R-isomer. (+)-Vestitol, also known as (3S)-Vestitol, is an S-isomer of Vestitol.


Chemical Structure

img
Vestitol
CAS# 35878-41-2 (R-isomer)

Theoretical Analysis

Hodoodo Cat#: 333110
Name: Vestitol
CAS#: 35878-41-2 (R-isomer)
Chemical Formula: C16H16O4
Exact Mass: 272.10
Molecular Weight: 272.300
Elemental Analysis: C, 70.58; H, 5.92; O, 23.50

Price and Availability

This product is not in stock, which may be available by custom synthesis. For cost-effective reason, minimum order is 1g (price is usually high, lead time is 2~3 months, depending on the technical challenge). Quote less than 1g will not be provided. To request quote, please email to sales @hodoodo.com or click below button.
Note: Price will be listed if it is available in the future.

Request quote for custom synthesis

Related CAS #: 20879-05-4 (S-isomer)   35878-41-2 (R-isomer)    

Synonym: Vestitol; (3R)-Vestitol; (-)-Vestitol;

IUPAC/Chemical Name: (3R)-3-(2-hydroxy-4-methoxyphenyl)-3,4-dihydro-2H-chromen-7-ol

InChi Key: XRVFNNUXNVWYTI-NSHDSACASA-N

InChi Code: InChI=1S/C16H16O4/c1-19-13-4-5-14(15(18)8-13)11-6-10-2-3-12(17)7-16(10)20-9-11/h2-5,7-8,11,17-18H,6,9H2,1H3/t11-/m0/s1

SMILES Code: OC1=CC2=C(C=C1)C[C@H](C3=CC=C(OC)C=C3O)CO2

Appearance: To be determined

Purity: >98% (or refer to the Certificate of Analysis)

Shipping Condition: Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.

Storage Condition: Dry, dark and at 0 -4 C for short term (days to weeks) or -20 C for long term(months to years).

Solubility: To be determined

Shelf Life: >2 years if stored properly

Drug Formulation: To be determined

Stock Solution Storage: 0 - 4 C for short term (days to weeks), or -20 C for long term (months).

HS Tariff Code: 2934.99.9001

More Info:

Biological target:
In vitro activity:
In vivo activity:

Preparing Stock Solutions

The following data is based on the product molecular weight 272.30 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
In vivo protocol:

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and SDS / CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

1: Zou J, Xu W, Li Z, Gao P, Zhang F, Cui Y, Hu J. Network pharmacology-based approach to research the effect and mechanism of Si-Miao-Yong-An decoction against thromboangiitis obliterans. Ann Med. 2023 Dec;55(1):2218105. doi: 10.1080/07853890.2023.2218105. PMID: 37318081; PMCID: PMC10274521.


2: Oh KK, Yoon SJ, Lee SB, Lee SY, Gupta H, Ganesan R, Sharma SP, Won SM, Jeong JJ, Kim DJ, Suk KT. The convergent application of metabolites from Avena sativa and gut microbiota to ameliorate non-alcoholic fatty liver disease: a network pharmacology study. J Transl Med. 2023 Apr 17;21(1):263. doi: 10.1186/s12967-023-04122-6. PMID: 37069607; PMCID: PMC10111676.


3: Fu Y, Fang Y, Gong S, Xue T, Wang P, She L, Huang J. Deep learning-based network pharmacology for exploring the mechanism of licorice for the treatment of COVID-19. Sci Rep. 2023 Apr 10;13(1):5844. doi: 10.1038/s41598-023-31380-7. PMID: 37037848; PMCID: PMC10086012.


4: Li Y, Qiao Y, Li H, Wang Z, Su E, Du Y, Che L. Mechanism of the Mongolian medicine Eerdun Wurile basic formula in improving postoperative cognitive dysfunction by inhibiting apoptosis through the SIRT1/p53 signaling pathway. J Ethnopharmacol. 2023 Jun 12;309:116312. doi: 10.1016/j.jep.2023.116312. Epub 2023 Feb 28. PMID: 36863641.


5: Alenezi SS, Alenezi ND, Ebiloma GU, Natto MJ, Ungogo MA, Igoli JO, Ferro VA, Gray AI, Fearnley J, Koning HP, Watson DG. The Activity of Red Nigerian Propolis and Some of Its Components against Trypanosoma brucei and Trypanosoma congolense. Molecules. 2023 Jan 7;28(2):622. doi: 10.3390/molecules28020622. PMID: 36677679; PMCID: PMC9860874.


6: Silva NBS, de Souza JH, Santiago MB, da Silva Aguiar JR, Martins DOS, da Silva RA, de Andrade Santos I, Aldana-Mejía JA, Jardim ACG, Dos Santos Pedroso R, Ambrósio SR, Veneziani RCS, Bastos JK, Pires RH, Martins CHG. Potential in vitro anti-periodontopathogenic, anti-Chikungunya activities and in vivo toxicity of Brazilian red propolis. Sci Rep. 2022 Dec 7;12(1):21165. doi: 10.1038/s41598-022-24776-4. PMID: 36477635; PMCID: PMC9729292.


7: Xie W, Xu X, Qiu W, Lai X, Liu M, Zhang F. Expression of PmACRE1 in Arabidopsis thaliana enables host defence against Bursaphelenchus xylophilus infection. BMC Plant Biol. 2022 Nov 22;22(1):541. doi: 10.1186/s12870-022-03929-7. PMID: 36418942; PMCID: PMC9682698.


8: Cheung S, Fang W, Li XQ, Wang R, Yan SK, Jin HZ. [A new isoflavone from Dalbergia odorifera and inhibitory activity of its tyrosinase]. Zhongguo Zhong Yao Za Zhi. 2022 Sep;47(18):4959-4965. Chinese. doi: 10.19540/j.cnki.cjcmm.20220422.202. PMID: 36164905.


9: Xiong L, Cao J, Yang X, Chen S, Wu M, Wang C, Xu H, Chen Y, Zhang R, Hu X, Chen T, Tang J, Deng Q, Li D, Yang Z, Xiao G, Zhang X. Exploring the mechanism of action of Xuanfei Baidu granule (XFBD) in the treatment of COVID-19 based on molecular docking and molecular dynamics. Front Cell Infect Microbiol. 2022 Aug 10;12:965273. doi: 10.3389/fcimb.2022.965273. PMID: 36034710; PMCID: PMC9399524.


10: Do LTM, Huynh TTN, Tran QHN, Nguyen HTM, Nguyen TTA, Nguyen TTN, Nguyen PHH, Sichaem J. Placoisoflavones A and B, two new cytotoxic isoflavonoids from Placolobium vietnamense N.D.Khôi & Yakovlev. Nat Prod Res. 2022 Aug 9:1-7. doi: 10.1080/14786419.2022.2110092. Epub ahead of print. PMID: 35945810.


11: Behera SK, Panda AK, Mishra R, Mahanty A, Bisht SS. Structure based virtual screening and molecular dynamics of natural anti-biofilm compounds against SagS response regulator/sensor kinase in Pseudomonas aeruginosa. J Biomol Struct Dyn. 2023 Aug-Sep;41(13):6011-6026. doi: 10.1080/07391102.2022.2100482. Epub 2022 Jul 22. PMID: 35869653.


12: Bueno-Silva B, Bueno MR, Kawamoto D, Casarin RC, Pingueiro JMS, Alencar SM, Rosalen PL, Mayer MPA. Anti-Inflammatory Effects of (3S)-Vestitol on Peritoneal Macrophages. Pharmaceuticals (Basel). 2022 Apr 29;15(5):553. doi: 10.3390/ph15050553. PMID: 35631379; PMCID: PMC9145271.


13: da Silva LHD, Squarisi IS, de Freitas KS, Barcelos Ribeiro A, Ozelin SD, Aldana-Mejía JA, de Oliveira LTS, Rodrigues TE, de Melo MRS, Nicolella HD, Alves BS, de Andrade Melo AL, Ccana-Ccapatinta GV, Bastos JK, Tavares DC. Toxicological and chemoprevention studies of Dalbergia ecastaphyllum (L.) Taub. stem, the botanical source of Brazilian red propolis. J Pharm Pharmacol. 2022 May 20;74(5):740-749. doi: 10.1093/jpp/rgac008. PMID: 35299250.


14: Aldana-Mejía JA, Ccana-Ccapatinta GV, Ribeiro VP, Arruda C, Veneziani RCS, Ambrósio SR, Bastos JK. A validated HPLC-UV method for the analysis of phenolic compounds in Brazilian red propolis and Dalbergia ecastaphyllum. J Pharm Biomed Anal. 2021 May 10;198:114029. doi: 10.1016/j.jpba.2021.114029. Epub 2021 Mar 16. PMID: 33756382.


15: Ali Z, Hawwal M, Avula B, Chittiboyina AG, Li J, Wu C, Khan IA. Phenoxychromone and 4-hydroxyisoflavans from the roots of Glycyrrhiza uralensis. Nat Prod Res. 2022 Aug;36(15):3850-3857. doi: 10.1080/14786419.2021.1892668. Epub 2021 Mar 1. PMID: 33648400.


16: Lee EJ, Shaikh S, Ahmad K, Ahmad SS, Lim JH, Park S, Yang HJ, Cho WK, Park SJ, Lee YH, Park SY, Ma JY, Choi I. Isolation and Characterization of Compounds from Glycyrrhiza uralensis as Therapeutic Agents for the Muscle Disorders. Int J Mol Sci. 2021 Jan 16;22(2):876. doi: 10.3390/ijms22020876. PMID: 33467209; PMCID: PMC7830955.


17: Muhammad I, Jacob MR, Ibrahim MA, Raman V, Kumarihamy M, Wang M, Al-Adhami T, Hind C, Clifford M, Martin B, Zhao J, Sutton JM, Rahman KM. Antimicrobial Constituents from Machaerium Pers.: Inhibitory Activities and Synergism of Machaeriols and Machaeridiols against Methicillin-Resistant Staphylococcus aureus, Vancomycin-Resistant Enterococcus faecium, and Permeabilized Gram-Negative Pathogens. Molecules. 2020 Dec 18;25(24):6000. doi: 10.3390/molecules25246000. PMID: 33352963; PMCID: PMC7765828.


18: Boeing T, Mejía JAA, Ccana-Ccapatinta GV, Mariott M, Melo Vilhena de Andrade Fonseca Da Silva RC, de Souza P, Mariano LNB, Oliveira GR, da Rocha IM, da Costa GA, de Andrade SF, da Silva LM, Bastos JK. The gastroprotective effect of red propolis extract from Northeastern Brazil and the role of its isolated compounds. J Ethnopharmacol. 2021 Mar 1;267:113623. doi: 10.1016/j.jep.2020.113623. Epub 2020 Nov 25. PMID: 33246124.


19: Abdallah RM, Hammoda HM, Radwan MM, El-Gazzar NS, Wanas AS, ElSohly MA, El- Demellawy MA, Abdel-Rahman NM, Sallam SM. Phytochemical and pharmacological appraisal of the aerial parts of Lotus corniculatus L. growing in Egypt. Nat Prod Res. 2021 Dec;35(24):5914-5917. doi: 10.1080/14786419.2020.1802273. Epub 2020 Aug 5. PMID: 32755245.


20: Ciesielski P, Metz P. Asymmetric one-pot transformation of isoflavones to pterocarpans and its application in phytoalexin synthesis. Nat Commun. 2020 Jun 18;11(1):3091. doi: 10.1038/s41467-020-16933-y. PMID: 32555159; PMCID: PMC7303153.